IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1989

An investigation of the potential of guided Logo
programming instruction for use in the
development and transfer of analogical reasoning

Nealy Frank Grandgenett
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

b Part of the Communication Technology and New Media Commons, Curriculum and Instruction

Commons, and the Instructional Media Design Commons

Recommended Citation

Grandgenett, Nealy Frank, "An investigation of the potential of guided Logo programming instruction for use in the development and
transfer of analogical reasoning " (1989). Retrospective Theses and Dissertations. 9188.
https://lib.dr.iastate.edu/rtd /9188

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9188?utm_source=lib.dr.iastate.edu%2Frtd%2F9188&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6” x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
313/761-4700 800/521-0600

Order Number 8920133

An investigation of the potential of guided Logo programming
instruction for use in the development and transfer of analogical
reasoning

Grandgenett, Nealy Frank, Ph.D.

Iowa State University, 1989

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

An investigation of the potential of guided Logo programming
instruction for use in the development and transfer

of analogical reasoning

by
Nealy Frank Grandgenett

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
Department: Professional Studies in Education
Major: Education (Curriculum
and Instructional Technology)
Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Fér thd Major Department

Signature was redacted for privacy.

For the Graduate College

Jowa State University
Ames, Iowa
1989

TABLE OF CONTENTS

PAGE

CHAPTER I: INTRODUCTION 1
Background of the Problem 2
Statement of the Problem 8
Goals of the Study 9
Research Questions 10
Limitations of the Study 10
Definition of Terms 11
Summary 14
CHAPTER II: LITERATURE REVIEW 17
Programming and the Development of Cognitive Skills 18
Guiding the Transfer of Cognitive Skills from Programming 27
Analogical Reasoning and Its Instruction 35
The Relationship of Analogical Reasoning to Programming 51
Summary 60
CHAPTER III: METHODS AND PROCEDURES 63
Subjects 64
Treatment Groups 68
Research Instruments 75
Research Design and Procedures 88
Directional Hypotheses and Analysis of Data 95
103

Summary

CHAPTER IV: RESULTS
Hypothesis One Results
Hypothesis Two Results
Results for the LogoWriter Basis Comprehension Test
Auxiliary Results
Summary of Study Results |
TABLES FOR AUXILIARY RESULTS
CHAPTER V: DISCUSSION OF RESULTS
Summiary of the Study
A Discussion of Far Transfer Results
A Discussion of Near Transfer Results
A Discussion of Basic LogoWriter Comprehension
Implications of Auxiliary Descriptive Statistics
Summary of Conclusions and Research Recommendations
Concluding Remarks
BIBLIOGRAPHY
ACKNOWLEDGEMENTS
APPENDIX A: SAMPLE BACKGROUND QUESTIONNAIRE
APPENDIX B: .EXPERIMENTAL LARGE GROUP ACTIVITY SHEETS
APPENDIX C: CONTROL LARGE GROUP ACTIVITY SHEETS
APPENDIX D: EXPERIMENTAL LAB ACTIVITY SHEETS
APPENDIX E: CONTROL LAB ACTIVITY SHEETS

107
108
110
113
114
127
131
147
147
150
158
164
166
169
172
174
186
188
190
196
202
214

APPENDIX F:

APPENDIX G:

APPENDIX H:
APPENDIX I:

APPENDIX J:
APPENDIX K:

APPENDIX L:
APPENDIX M:

iv
ANALOGICAL REASONING INSTRUCTIONAL

TECHNIQUE '

EXPERIMENTAL LARGE GROUP INSTRUCTOR
OUTLINES

CONTROL LARGE GROUP INSTRUCTOR OUTLINES
EXPERIMENTAL LAB INSTRUCTOR OUTLINES
CONTROL LAB INSTRUCTOR OUTLINES

REUSE OF SUBPROCEDURES PROGRAMMING
TEST

LOGOWRITER BASIC COMPREHENSION TEST

ANALOGICAL REASONING INTRODUCTION
TRANSPARENCIES

229

231
243
255
264

272
274

287

TABLE 1:

TABLE 2:

TABLE 3:

TABLE 4:

TABLE 5:

TABLE 6:

TABLE 7:

LIST OF TABLES

ognitive Ability T nverbal B
KR-20 Reliability Estimates Computed for the
Current Study

Hypothesis 1

nitive Abili - Nonverbal Bat
Comparison of Mean Composite Score for
Experimental and Control Treatment Groups

Hypothesis 2

Reuse of Subprocedures Programming Test
Descriptive Statistics for the Reuse of
Subprocedures Raw Score for Both Treatment

Groups

Hypothesis 2
Reuse _of Subpro ures Programming Tes

Comparison of Means for the Transformed Reuse
of Subprocedures Scores for Both Treatment
Groups

Instructional Content Comprehension

Writer Basi mprehension Te
Comparison of Means Scores for Both Experimental
and Control Treatment Groups

Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery
Comparison of Mean Composite Score for Both
Treatment Groups with Age and Computer
Nervousness Controlled as Covariates

Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery
Comparison of Mean Composite Score for Both
Treatment Groups by Gender, with Age and
Computer Nervousness Controlled as Covariates

Page

87

110

111

112

114

132

133

TABLE 8:

TABLE 9:

TABLE 10:

TABLE 11:

TABLE 12:

TABLE 13:

TABLE 14:

Vi

Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery

Comparison of Mean Composite Score for Both
Treatment Groups by Year in College, with
Computer Nervousness Controlled as a Covariate

Auxiliary Results Hypothesis 1
Cognitive Ability Test - Nonverbal Battery

Comparison of Mean Composite Score for
Freshmen in BothTreatment Groups with Age and
Computer Nervousness Controlled as Covariates

Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery

Comparison of Mean Composite Score for
Sophomores in Both Treatment Groups with Age
and Computer Nervousness Controlled as Covariates

Auxiliary Results Hypothesis 1

itive Ability Test - Nonverbs
Comparison of Mean Composite Score for Juniors in
Both Treatment Groups with Age and Computer
Nervousness Controlled as Covariates

Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery

Comparison of Mean Composite Score for Seniors
in Both Treatment Groups with Age and Computer
Nervousness Controlled as Covariates

Auxiliary Results Hypothesis 2
Reuse of Subprocedures Programming Test

Comparison of Means for the Transformed Reuse
of Subprocedures Scores for Both Treatment
Groups, with Age and Computer Nervousness
Entered as Covariates

Auxiliary Results Hypothesis 2

Reuse_of Subprocedures Programming Test
Comparison of Means for the Transformed Reuse
of Subprocedures Scores for Both Treatment
Groups by Gender, with Age and Computer
Nervousness Entered as Covariates

134

135

136

137

138

139

140

TABLE 15:

TABLE 16:

TABLE 17:

TABLE 18:

TABLE 19:

TABLE 20:

vii

Auxiliary Results Hypothesis 2
Re f I res Programming Tes

Comparison of Means for the Transformed Reuse
of Subprocedures Scores for Males in Both
Treatment Groups, with Age and Computer
Nervousness Entered as Covariates

Auxiliary Results Hypothesis 2

Reuse of Subprocedures Programming Test

Comparison of Means for the Transformed Reuse of

Subprocedures Scores for Both Treatment Groups
by College Year, with Computer Nervousness
Entered as a Covariate

Auxiliary Results
Programming In ment Descriptive tistic

Percent of Treatment Group Getting Specific
Problems Correct on the Reuse of Subprocedures
Programming Instrument

Auxiliary Results :

rogramming Instru Descriptiv i
Mean Number of Commands Used Per Successful
Program on the Reuse of Subprocedures
Programming Instrument

Auxiliary Results
Programming In ment Descriptive Statistics

Percent of Treatment Group Using Variables and
Recursion Within the Reuse of Subprocedures
Programming Instrument

Auxiliary Results
Correlations Between Qutcome Variables

Correlations of the Cognitive Ability

Test - Nonverbal Battery With Selected
Programming Variables on the Reuse of
Subprocedures Programming Instrument

141

142

143

144

145

146

viii

LIST OF FIGURES
Page
FIGURE 1: Sequence of study events 90

FIGURE 2: Interaction of college year with instructional
treatment : 153

CHAPTER I: INTRODUCTION

In 1933 John Dewey suggested that the major purpose of
education was teaching people to think. He stated that "education...is
vitally concerned with cultivating the attitude of reflective thinking,
preserving it where it already exists, and changing looser methods of
thought into stricter ones whenever possible" (b. 78). As we approach
the 21st century, such a purpose for educatibn may be all the more
relevant. We are entering what has been coined the "Information Age",
where information is replacing land, labor, and capital as the most
important societal commodity (Stonier, 1983). Human knowledge is
expanding at an incredible rate, and the efficient management of that
information is becoming of primary importance to our society and its
educational institutions. The ability to think in a careful and logical
manner, as suggested by Dewey, would seem to be increasingly
important in this new age.

In a book edited by Mary Alice White, What Curriculum for the
Information Age?, author Julie McGee suggested that there was a
fundamental need to "reorder the curriculum to emphasize a new
hierarchy of skills; skills that will equip students for life in the
Information Age" (1987, p. 82). She stated that the central skills
needed are: "the ability to evaluate information, the ability to set
priorities, and the ability to make decisions (p. 82). Therefore, critical
thinking, and its associated problem solving and informational skills,

would seem to be an emerging focus for education in this new era.
Such a focus implies that the careful and rapid investigation of
potential methods to effectively instruct these cognitive skills will be of

utmost importance to the changing curriculam of this new age.
Background of the Problem

Critical thinking involves a variety of important cognitive skills.
Although the specific skills comprising "critical thinking" is still in
extensive debate (Halpern, 1987), one skill in particular, analogical
reasoning, has been identified by a variety of researchers, such as
Sternberg (1977b), Gick and Holyoak (1980), and Halpern (1987), as
one of these specific skills. Analogical reasoning is fundamentally the
ability to utilize a well understood problem to provide insight and
structure for a less understood problem (Gentner, 1982). For
example, when a student is learning about the strucfure of an atom, he
or she might assist understanding by referencing previous learning
about the structure of the solar system. Such reasoning would seem to
permeate everyday life, as previous experiences are used to understand
current situations, and former problems are referenced to gain insight
into new ones.

In research investigzting problem solving, analogical reasoning has
been targeted as one of the most important problem solving processes

that humans use (Hunt, 1982). Polya, in his work on mathematical

problem solving, and in his discussion on student conclusioné.' stated .
that "inference by analogy appears to be the most common kind of
conclusion and it is possibly the most important" (1957, p. 43). Some
researchers have even gone so far as to indicate that all problem
solving can be seen as fundamentally analogical in nature; as learners
continually attempt to transfer knowledge from a known situation to a
novel one (Moore and Newell, 1973; Rumelhart and Norman, 1981).

Can students be taught to be good analogical reasoners in light of
the global nature of this skill? This question has been posed by |
researchers, but seems to have received little serious research and
empirical investigation (Holyoak, 1984). Most of the research which
does exist has investigated analogical reasoning training within a
controlled laboratory setting (e.g., Sternberg, Ketron, & Powell, 1982).
Very few studies have investigated analogical reasoning training given
within the dynamic environment of the classroom. Although
theoretical support for the potential success of classroom training in
analogical reasoning exists (Holyoak, 1984, Sternberg, 1977b), studies
that actually attempt training in the classroom are greatly needed
(Alexander, White, Haensly, & Crimmins-Jeanes, 1987).

General analogical reasoning training is not easy to incorporate
into the classroom. In considering the use of analogy in problem
solving, Holyoak suggests that analogical thinking probably can be
improved by training, but that such training must incorporate a careful

assessment of the way in which completed problems will be encoded

by the student. The important characteristic of a problem, as it relates
to other similar or more general problems, may need to be emphasized
in order for the student to be able to reference it in the solving of
additional problems. Thus, students may need to be taught to
explicitly note abstract goals, plans, and causal relations between
problems they encounter to achieve skills which are not strictly
domain specific (1983). Such feaching demands that a great deal of
careful planning go into the instruction.

Recently, a direct attempt at instruction of analogical reasoning in
the language arts classroom was made by researchers Alexander,
White, Haensly, and Crimmins-Jeanes using 4th, 8th and 10th graders
(1987). By using the Sterhberg componential model (Sternberg,
1977a), analogical reasoning training was incorporated into an existing
language arts curriculum. Students were gradually moved from
concrete nonverbal analogies to more abstract verbal analogies by use of
instruction based on Sternberg's component processes. Using the
Woodcock Reading Mastery test as an outcome measure, these
researchers found a significant effect for their classroom analogical
reasoning training. Alexander, White, Haensly, and Crimmins-Jeanes
felt their study demonstrated that analogical reasoning training could
be provided in the uncertain and dynamic environment of the
classroom. However, they were also careful to suggest that further

research, especially within differing age groups and content areas, was

greatly needed to determine the effects of classroom-based
componential training in analogical reasoning.

One research area which seems to offer potential for student
development in generalized analogical reasoning is the continuing
investigation of the cognitive demands and benefits associated with
computer programming. Computer programming has long been
investigated as a rich environment for the exercise of general critical
thinking skills by researchers such as Papert (1980), and Feurzig,
Horowitz, and Nickerson (1981). The Logo programming language has
operated as a research focus in many of these investigations, and some
positive cognitive benefits from the programming environment have
been demonstrated in Logo studies (Howe, O'Shea, & Plane, 1979;
Clements & Gullo, 1984; Degelmen, Free, Scarlato, Blackburn, and
Golden, 1986). However, the large majority of studies in this area
have been anecdotal and case study in nature. There is a critical need
for empirical classroom studies investigating the potential cognitive
benefits of computer programming (Pea, 1983; Khayrallah & Maud
Van Den Meiraker, 1987; Walker, 1987).

Within the last few years, the skill of analogical reasoning has
begun to be specifically targeted in investigations involving computer
programming benefits (Mann, 1986; Clement, Kurland, Mawby, & Pea,
1986, Swan & Black, 1987). Researchers Clement, Kurland, Mawby
and Pea, at Bank Street College, recently found a positive correlation

between success on an analogical reasoning task and the reuse of

subprocedures within a specific programming task (1986). The
appropriate reuse of subprocedures, and the careful planning for a
reuse of subprocedures, is essential for effective modular
programming. Upon further investigation and diécussion, these
researchers concluded that "analogical reasoning may itself develop
through its practice in programming" (p. 482).

Reasoning by analogy would seem to be an essential tool in the
programming process. In considering the actual process of program
construction, expert programmers seem to make strong use of their
analogical reasoning ability to utilize past programming experiences in
constructing an effective solution to a new problem (Pennington,
1982). These experts appear to reference quickly from internal
"storehouses" of past programs, choosing or modifying relevant
structures and plans, to facilitate the development of new programs.
This behavior exhibited by these experts suggests that analogical
reasoning may be a skill which is fundamentally tied to the general
problem solving processes used in effective computer programming.

There is some indication however, that general problem solving
and critical thinking skills that might develop through programming,
including the skill of analogical reasoning, may need to be taught
directly rather than be expected to occur spontaneously (Pea, 1983).
Simply being involved in computer programming activities may not
provide students with enough support to encourage the use of these

general cognitive skills outside of the programming environment (Pea

& Kurland, 1987; Salomon & Perkins, 1987). Several studies that have
looked specifically at the spontaneous transfer of cognitive skills from
programming have generally failed to find significant effects on tasks
outside of the programming domain (Pea, 1983; Pea & Kurland,
1984b). Apparently, if programming is to be used for developing
geﬁerahzed critical thinking skills, specific instruction or guidance in
those skills may need to be incorporated into the programming
instruction. Thus, if analogical reasoning developed through
programming is expected to help a student solve problems in other
nén—programming domains, some special methodology focusing on the
general nature of analogical reasoning may be needed in the
programming instruction. ‘

In an extensive recent investigation and review of the research
literature regarding the potential cognitive outcomes to programming
in Logo, Swan and Black (1987) found that virtually all studies
reporting positive transfer results shared elements of a pedagogy
specifically encouraging transfer. They suggested three common
pedagogical transfer elements: 1) a focus on specific aspects of the
problem solving process, 2) a direct instruction of the targeted skills,
and 3) a mediated learning approach to student and teacher
interaction. They indicated that these three pedagogical elements
were typically present in studies where positive transfer into non-
programming domains had been demonstrated. Thus, for computer

programming to successfully develop a cognitive skill useful in another

domain, programming instruction may need to incorporate pedagogical
elements that specifically encourage transfer to the new domain.

As teachers search for methods to prepare their students fbr the
critical thinking needed in the information age, they will be focusing
on methods that are useful in a classroom setting. Computer
- programming seems to offer the potential for efficiently improving the
general skill of analogical reasoning in a class group; however, it
‘appears that teachers will not be able to simply teach their students to
write programs. Some careful attention to an instructional
methodology supporting the general nature of analogical reasoning, and
encouragement of the transfer of the skill to other domains, may be

needed for this potential to be realized.

Statement of the Problem

Research about analogical reasoning is moving beyond theoretical
definition and is beginning to search for methods to instruct and
develop this important skill in learners. This is occurring at the same
time that research about the cognitive benefits of computer
programming is moving from the investigation of cognitive skills
achievable spontaneously through programming, to a more deliberate
focus on guiding the development of specific cognitive skills while
programming. It may be that computer programming can act as a
useful and powerful instructional medium for the development of

general analogical reasoning, but this potential is currently only a
theoretical extension of the ongoing research from these two
traditionally separate areas. Empirical investigation of this potential is
needed. Thus, the problem of this study was to investigate the
potential for the development of general analogical reasoning offered

by the guided instruction of computer programming,

Goals of the Study

The two goals of the study were to look at two major potential
effects of incorporating systematic analogical reasoning training within
guided Logo programming instruction. The first goal was to investigate
the far transfer effects of such programming instruction on general
analogical reasoning development. The second goal of the study was
to investigate the near transfer effects of such programming
instruction on a related and important computer programming skill -
the ability of the student to reuse subprocedures between

programming problems.

Research Questions

There were two research questions for this study:
1) Would students experiencing Logo programming instruction,
systematically oriented for the development of general analogical

10

reasoning, demons&ate greater analogical reasoning development than
students experiencing Logo programming instruction not
systematically oriented for transfer?

2) Would students experiencing Logo programming instruction,
systematically oriented for the development of general analogical
reasoning, demonstrate a greater tendency to reuse subprocedures
between programming problems than students experiencing Logo

programming instruction not systematically oriented ftsr transfer?
Limitations of the Study

The study was conducted with acknowledgement to the following

‘limitations:
1) It was necessary to operationalize the definition of analogical

reasoning ability as the ability to solve problems in an "analogy type"
format. It is recognized that analogical reasoning is a skill that extends
beyond a narrow-problem solving definition.

2) Due to a lack of suitable standardized instruments, it was
nécessary to use an investigator modified instrument, developed by
previous researchers, for assessing the student reuse of subprocedures
between programming problems. |

3) Programming instruction was limited to the Logo programming
language, thus generalizations to other programming languages and

environments are restricted.

11

4) The sample was college students enrolled in an educational

computing class, thus generalization to other populations is limited.

Definition of Terms

Logo _programming - Logo is a computer programming language
designed by Seymour Papert and associates at the Massachusetts
Institute of Technology for use in a programming environment with
educational applications. It is a list-processing language that combines
formal procedural representations with concrete and irﬁmediate
feedback to provide the student with an environment designed to
facilitate intellectual exploration and experimentation. More than any
other programming language, it has been the focus of a discussion by
researchers on the cognitive benefits of learning and engaging in
computer programming activities (Khayrallah & Van Den Meiraker,
1987). For this study, the software package LogoWriter, by the LCSI
company, was used for Logo programming activities. LogoWriter has
the same Logo structure available in other versions of Logo, but

includes an improved editor, and expanded shape and turtle graphic

capabilities.

Guided Logo programming instruction - Guided Logo programming

instruction is defined as programming instruction, using the Logo
programming language, that is systematically oriented for transfer of a
specific cognitive skill. Based on the Logo research analysis of Swan

12

and Black (1987), this orientation involves an emphasis on three
pedagogical components to facilitate transfer. These components are:
1) a focus on a specific cognitive skill, 2) direct instruction of that skill
through programming, and 3) a mediational style of teaching by the

instructor.
Direct instruction - Direct instruction is defined by Doyle (1983).

Direct instruction is instruction which carefully structures cognitive
tasks, utilizes explicit instruction of the problem-solving processes
involved in those tasks, and incorporates a systematic guidance
through a series of exercises that permit frequent opportunities for
practice and feedback. .
Mediational style of teaching - This sfudy utilizes the definition of
Delclos, Littlefield, and Bransford (1984) for a mediational style or
approach to the teaching of Logo. In such a style, "the teacher makes
specific and conscious attempts to frame what is learned in the Logo
lesson in a broader context and to bridge specific principles learned to
other situations where the same type of strategy would apply" (p. 6).
Thus, in this approach the teacher continually seeks to help students
formulate general principles from class activities, rather than
principles specific to the immediate content. Also, in this approach
students are helped to view themselves as active problem-solvers and
learners, by being prompted to continually analyze their own thinking
strategies, and by being encouraged to generate increasingly efficient

13

and alternative solutions to problems. This teaching approach typically
utilizes Socratic dialogue between teacher and students.

Analogical reasoning - As suggested by Sternberg (1977a), people
reason analogically whenever they "make a decision about something
new in experience by drawing a parallel to something old;" In this
study, this important skill is operationally defined to encompass the
ability to solve problems of an analogy format as found in the Cognitive
Abilities Test - Nonverbal Battery (Thorndike & Hagen, 1986). This
test utilizes geometric figures in three specific subtest formats and has
been extensively normed and standardized. Analogy items, similar in
format to this test, have long been included on many standardized,
psychometric tests. The reliability of standardized analogy tests are
typically high, and the indication of general analogical reasoning skill
by tests using this format are reported as strongly valid. As stated by
~ Sternberg in his research on the component processes of analogical
reasoning, and the operation of these components in standard analogy
tests: "The construct validity of performance on tests of analogical
reasoning is unimpeachable" (1982, p. 237). |

Transfer - As defined by Cormier and Hagman (1987), transfer of
learning occurs "wilenever prior-learned knowledges and skills affect
the way in which new knowledges and skills are learned and
performed” (p. 1). Transfer of learning is often divided into two types,
near transfer and far transfer. Near transfer is usually considered to be

transfer of learning which takes place within the same subject domain.

14

In this study, near transfer of learning was expected to occur if
programming instruction, systematically incorporating analogical
reasoning training, facilitated the reuse of subprocedures within the
programming activity. Far transfer is usually considered transfer of
learning which takes place between different subject domains. In this
study, far transfer of learning was expected to occur if the Logo
programming instruction, systematically incorporating analogical
reasoning training, positively influenced scorés on the Nonverbal

Battery of the Cognitive Abilities Test.

Summary

This chapter introduced a study that investigated the potential of
guided Logo programming instruction targeting the development and
transfer of analogical reasoning. The chapter included a brief
discussion on the background of the study, a statement of the study
problem, goals for the study, research questions, limitations, and study
definitions.

The background of the study was discussed with initial reference
to the educational concerns of our society; a society now entering the
information age. This societal age will require effective methods for
instructing critical thinking and problem solving skills, and this study
targeted analogical reasoning as one such skill. Classroom instruction

of computer programming has been suggested by researchers as

15

offering potential for the development of analogical reasoning;
however, researchers also imply that such potential may only be
realized if the instruction is systematically guided to develop this skill.

Thus, the problem of this study was to investigate the potential for
the development of general analogical reasoning offered by the guided
instruction of computer programming. This potential is implied by:

1) research oﬁ analogical reasoning, and 2) research on the cognitive
benefits of computer programming.

This chapter presented the two goals for the study: 1) the
investigation of the far transfer effects of guided Logo programming on
general analogical reasoning skill, and 2) the investigation of the near
transfer effects of such instruction on student reuse of subprocedures
between programming ptoblem,s. These goals were related to two
research questions. The first question asked whether students
experiencing guided Logo programming instruction would demonstrate
greater general analogical reasoning than students experiencing more
traditional Logo instruction. Similarly, the second question asked
whether these students experiencing guided instruction would also
demonstrate a greater tendency to reuse subprocedures between
programming problems than the more traditionally instructed group.

Finally, this study investigated the potential of guided Logo
programining instruction for use in the development of analogical
reasoning as a single step in helping to find possible methods to
instruct general cognitive skills. It focused on analogical reasoning as

16

one specific skill, and guided Logo programming as one particular
method. Research related to the potential development of analogical
reasoning through guided Logo programming is discussed in Chapter

Two.

17
CHAPTER II: LITERATURE REVIEW

The purpose of this chapter is to review previous research related
to Logo programming instruction and the potential development and
transfer of analogical reasoning. Various pedagogical implications for
Logo instruction when seeking the transfer of cognitive skills to other
domains beside programming will be discussed, with the potential for
the development of analogical reasoning as a central focus to this
investigation.

This review will be structured by focusing on four areas:

1) research concerning programming and the development of cognitive
skills, 2) research on guiding the transfer of cognitive skills from
programming, 3) research on analogical reasoning and its instruction,
and 4) research fegarding the relationship of analogical reasoning to
programming.

Although this discussion will target the Logo programming
language and the specific cognitive skill of analogical reasoning, more
general research involving other programming languages, and other
cognitive skills, will be incorporated when this research provides
insight into the potential development of analogical reasoning through

guided Logo programming.

18
Programming and the Development of Cognitive Skills.

Computer programming has often been a topic of discussion in
educational computing research. As well as being seen as a potentially
useful skill in future careers and occupations, it has been regarded by
many researchers as a rich environment for the practice and
development of general cognitive skills. A wide variety of such skills
has been mentioned by researchers as possible cognitive benefits to
active participation by a student in computer programming. These
have included skills such as metacognition, general problem solving,
procedural reasoning, divergent thinking, and general heuristics
(Papert, 1972, 1980; Feurzig et al., 1981). It is this potential for
coghitive development that seems to be a major reason for the
continued popularity of computer programming in the general school
curriculum, especially for the pre-high school grades where the
occupational advantages of computer programming are less immediate

(Pea & Kurland, 1984a).

Claims for the cognitive benefits of programming

Many of the claims for the potential cognitive benefits of
computer programming have centered on the Logo pfogramming
language. Logo was developed by Seymour Papert and colleagues in the
late 1960s at the Massachusetts Institute of Technology, as a computer

programming language developed specifically for education. Since

19

that time, Logo has clearly become the language of focus in the
discussion of programming's potential cognitive benefits (Khayrallah &
Van Den Meiraker, 1987).

Logo, as seen by its creators, was more than a programming
language. It was a carefully developed computer culture, where
students could engage in self-guided Piagetian type learning. In this
environment it is believed that students practice and develop
important thinking skills in a natural non-threatening setting.
Students theoretically use the programming language as an explicit
medium for their own thinking, employing the computer as an "object
to think with". They direct and teach the computer. This approach is
significantly different from the more traditional computer-assisted
instruction environments, where the student is typically the one taught
or directed (Papert, 1980).

Specific claims concerning the potential cognitive benefits from
programming, many referencing Logo, have not been modest. Feurzig,
Horowitz and Nickerson (1981) have listed a large number of potential
benefits including: more rigorous thinking, better understanding of
general programming concepts, greater facility with heuristics,
improved abilities with problem decomposition, and an enhanced self-
conciousness with solving problems. Watt (1982) targeting the Logo

language in particular, stated:

20

“[The Logo] programming environment can help children
to develop problem solving skills, to think more clearly,

to develop an awareness of themselves as thinkers and

learners" (p. 48).

Often, such clairas for the cognitive benefits of programming focus
on the potential for problem solving development offered by computer
programming as an explicit language for the problem solving
experience. Thus, the programming language itself, which provides
the means for students to communicate with the computer, can also
provide students with the means to analyze and refine their own
thinking about a specific problem. As expressed by Papert, such a

situation can theoretically provide assistance to a student's cognitive

operations:

“The child programs the computer. And in teaching the
computer how to think, children embark on an
exploration about how they themselves think. The
experience can be heady: Thinking about thinking turns
the child into an epistemologist, an experience not even

shared by most adults" (1980, p. 19).

21

Initial inv ation ng the claims of itiv nefi

There has, however, along with the claims for the cognitive
potentials of computer programming, been a lack of classroom studies
to refine and test these claims. A few early researchers have attempted
this. A study by Howe, O'Shea, and Plane (1979) found that a small
group of 11 year-old students involved in Logo programming for a year
did demonstrate slightly better understanding of certain algebra
concepts than did a control group not involved in programming. Also,
teachers in this study felt the Logo group could articulate mathematical
issues and difficulties more efficiently. Unfortunately, this study was
plagued by concerns related to a small sample size, and the possible
bias introduced when teachers rated students while having knowledge
of their experimental treatment.

The Brookline Logo project (Papert, Watt, diSessa, & Weir), also
of 1979, is oiten cited as a early major project for the investigation of
learning in the Logo environment. This study, fuhded by the National
Science Foundation and conducted in the Brookline Massachusetts
Public Schools, sought to document the behavior of sixty-six fourth to
sixth graders while working with Logo and to correlate this work to
geometric reasoning ability. The project directors found anecdotal
evidence in the form of teacher testimonials for increased learning by
the Logo group. However, empirical evidence, in the form of scores on

the geometric reasoning tasks, was not statistically significant for the
study.

22

An anecdotal basis for the overall beneficial effects for
programming in Logo was also reported in an article reporting on the
Lamplighter Project (Overall, 1981). This study listed a variety of
cognitive benefits including problem solving skills, logical thinking
skills, rule learning, and improved self-concept development. This
article based these conclusions on non-experimental observations of
the third grade participants of the study. Again, teacher testimonials,

rather than empirical evidence, were the basis for the findings.

Empirical investigation of the cognitive benefits

Although much of the early research finding positive results for
the cognitive benefits to computer programming relied on anecdotal
evidence, a few empirical studies are available. Clements and Gullo, in
a widely focused empirical study (1984), investigated the effects of
learning Logo programming on various aspects of young children's
cognition. The aspects examined included metacognitive ability,
cognitive style, and cognitive development. The researchers used
eighteén first grade students, randomly assigned to a Logo or CAI
group, for a twelve week treatment. The treatment was rich in
supervision, with a teacher present for every two or three students.
Post-test results indicated a difference in favor of the Logo group in
metacognition and divergent thinking. No differences were found for

the groups on two Piagetian tasks of cognitive development.

23

In a more recent study (1986), Clements followed up this work
with a study using six to eight year old children in a 22 week extensive
study involving a Logo, CAI, and control group. Using a wide variety of
empirical instruments, significant differences were found in favor of
the programming group for operational competence, metacognition,
creativity, and direction giving. No differences were found on
measures of reading and mathematics &chievement. Again, the Logo
and CAI treatments were somewhat atypically rich in supervision with
3 pairs of students facilitated by one or two teachers during each
session.

In a longitudinal look at the same children from the 1984 study
(1987), Clements reportéd empirical results still favoring the Logo
group on language mechanics and vocabulary, and in analogical
reasoning. Thus, the Logb group still demonstrated a difference from
the non-programming CAI group after an eighteen month period.

In an empirical dissertation study similar to the Clements studies,
and utilizing careful sequencing of the programming tasks in the Logo
instruction, Odom (1982) looked at groups of fifth and sixth grade
volunteers given the Ross Test of Higher Cognitive Processes before
and after instruction. Two groups were compared, one group
experiencing Logo programming instruction and another group
experiencing non-programming instruction. Significant differences

favoring the Logo group were found for analysis and evaluation levels of

24

the Ross Test of Higher Cognitive Processes, with no differences found

for the synthesis level.

Negative results for the spontaneous transfer of cognitive skills

Results from studies examining the potential cognitive benefits of
computer programming have not always been positive however. In a
discussion of the cognitive aspects programming, Pea and Kurland
(1984a, 1987) have offered skepticism regarding the spontaneous
transfer of cognitive skills from the computer programming
environment. Generally, their skepticism regarding spontaneous
transfer has developed from the fact that students often do not attain
the degree of programming proficiency needed to support spontaneous
transfer, and often draw little cognitive support for transfer in the
discovery learning approach typical of Logo. In a study illustrating this
problem, Pea (1983) looked carefully at the programming proficiency
of fifty-nine to twelve year oid children after a year of intensive
programming. In this study children were assessed for program
debugging, program writing, and program understanding. The results
showed that students still had relatively poor skills in all areas even
after a year of actual programming.

In a study targeting the potential development of general planning
skills ffom Logo programming, Pea and Kurland (1984a) compared a
Logo group to a non-programming group on a classroom planning task.

The study used a group of nine to twelve year old children over the

25

period of a single school year. Study results showed no difference in
the planning skills between the groups. In an immediate replication,
with a different but similar group of children, Pea and Kurland (1984b)
modified the planning task so that it was done on the computer to
more directly simulate the Logo environment of immediate feedback.
As in the first study, no differences were found between groups.

Pea and Kurland, although supportive of computer programming
as an intellectual tool to practice cognitive skills, find fault with the
discovery learning approach that has been typical of Logo (1984b,
1987). They clearly see an educational potential in programming, but
see no guarantee offered for general cognitive development from the
programming activity alone. It is this discovery learning approach of
Logo, rather.than the activity of programming itself, which has initiated
much of the concern and criticism over the potential cognitive benefits

to programming (Khayrallah & Van Den Meiraker, 1987).

A need for more empirical and narrowly focused research

Generally, research on the cognitive benefits of programming is
an area filled with mixed and inconclusive results. Such a state is
facilitated by the disproportionate ratio of a large number of anecdotal
reports and testimonials to a relatively small number of empirical
i studies. The anecdotal studies generally indicate a potential for
development of cognitive skills through programming, but make
specific predictions or instructional implications difficult. It seems

26

apparent that this ratio needs to become more balanced, and indeed
many researchers are indicating a critical need for empirical studies to
help define and confirm the cognitive potential of programming (Pea &
Kurland, 1984b; Khayrallah & Van Den Meiraker, 1987; Walker, 1987;
Becker, 1987).

An additional concern in this research area deals with the wide
focus of completed studies. Empirical studies, as well as anecdotal
ones, have tended to utilize a more general investigative approach,
looking at an assortment of cognitive skills and outcome measures,
rather than at a specific problem solving or cognitive process. Such
research is important for generating hypotheses regarding the
coghitive benefits to programming, but provides relatively inconclusive
results in determining the potential of programming in developing a
speéiﬁc cognitive skill. Also, many of the programming studies, both
anecdotal and empirical, have often incorporated a relatively atypical
classroom situation, with extremely high student teacher ratios, or
fairly isolated small group instruction. Such research makes it difficult
to derive much direction for the classroom teacher. As already
indicated by a large number of researchers (Mann, 1986; Salomon &
Perkins, 1987; Swan & Black, 1987), further systematic research
focusing on specific cognitive skills, but incorporating a variety of

different populations and pedagogies, is greatly needed.

27
Guiding the Transfer of Cognitive Skills from Programming:

Perhaps one of the reasons that research on the cognitiire benefits
of computer programmihg has been so widely focused and anecdotal in
nature is the inherent complexity of the programming activity. The
process of computer programming is indeed complicated, involving
many difficult skills. These skills involve 1) understanding the task the
program is to accomplish 2) planning a programming strategy to
accomplish the task, 3) implementing a plan via a programming
language, and 4) debugging a plan and the program code (Pea &
Kurland, 1984a, 1987). Thus, computer programming requires a
substantial amou‘nt of careful planning when developing a program to
accomplish some task. Such planning behavior draws heavily on
mental abilities, and it has been shown that expert programmers often
use a large variety of cognitive skills when they participate in the
retrieving and assembling of cognitive plans for a new program

(Nichols, 1981).

The necessity of guiding planning skills from programming

Pea and his associates at Bank Street College found that students
often avoid planning behavior completely when working on a computer
program. They seemed to opt for a trial and error programming style
that negated any need for higher cognitive processes (Pea, Kurland, &

Hawkins, 1987). Therefore it is unrealistic to expect that students will

28

spontaneously develop generalized cognitive skills, when they seem to
actively avoid the use of such skills when engaged in a programming
task. For this reason, Pea has indicated that the problem solving and
critical thinking skills attainable through computer programming may
need to be taught directly rather than expected to occur spontaneously
(Pea & Kux_'land. 1984a). Programming instruction may have to
explicitly emphasize the targeted skills so that students are not
permitted to rely solely on a preferred trial and error approach to
writing programs.

Planning skills in particular seem unachievable in the
programming environment spontaneously (Clements & Merriman,
1987, Pea & Kurland, 1984b). Children and novice programmers often
slip into.a "hacking" method of programming, during which they
blindly try command after command, incorporating little reflective
thought (Leron, 1985). Such a strategy may eventually achieve the
desired output without the student ever incorporating anything but
superficial planning into the problem solving process. Students may
require instruction that directly encourages the planning process. As
stated by Clements and Merriman: "to develop planning skills, it may
be necessary to structure children's worl; so that they predict and plan
before programming" (1987, p. 28).

29

The necessity of ggiding other cognitive skills

Planning skills are not the only cognitive skills that may need
instructional support in the programming process to encourage
generalized transfer to non-programming tasks. Swan and Black
(1987), extensively reviewed the literature regarding the cognitive
outcomes to programming in Logo. They found that all studies noting
positive results of cognitive skill transfer shared specific elements of a
pedagogy that encouraged such transfer. They pointed to three
pedagogical transfer elements: 1) a focus on specific aspects of the
problem solving process, 2) direct instruction of the targeted skill,
and 3) a mediated approach to student and teacher interaction.

Swan and Black (1987) attempted to design instruction around
these pedagogical components in a twelve week study involving six
successive units dealing with six cognitive skills: 1) subgoal formation,
2) forward chaining, 3) backward chaining, 4) systematic triél and
error, 5) alternative representation, and 6) analogy. Using introductory
non-computer activities, and problems specifically designed to
highlight one of the six cognitive skills, Swan and Black gave their
instruction to 133 students in the fourth through the eighth grades.
The study used a pretest-posttest single group design, with students
pretested for all cognitive skills before the six units and then
posttested after the six units. Instruction used class discussion, and
individual and paired work on four programming problems for each

unit. Investigator constructed outcome measures consisted of word

30

problems, paper and pencil problem solving activities, the Torrence |
Test of Creative Thinking, and a constructed test of simple verbal
analogies. Swan and Black found significant differences, p<.001,
between performance on the pretests and posttests for every skill
except backward chaining.

The Swan and Black study clearly supports the claims that
generalized cognitive skills can be transferred from programming, and
that a guided instructional methodology may be necessary to
successfully facilitate this transfer. Unfortunately, since Swan and
Black did not use a control group in their study, it is difficult to
determine how much of the relative pretest-posttest improvement was
due to the transfer pedagogy they employed. The programming activity
alone, or the initial non-computer discussions of the targeted skills
alone, may have been powerful enough to improve the posttest scores.
The initial skill introduction is specifically of concern since students
received all six units of instruction before being posttested on any of
the skills, permitting considerable blending of instruction. Replication
is needed, using a control group, to help determine the relative
importance of the transfer pedagogy.

In other research looking at guiding transfer of cognitive skills
from programming, De Corte and Verschaffel (in press) found that
when evidence for the transferable effects of programming was
missing, one of two situations were .present: 1) students were

deficient in necessary programming skills, or 2) an explicit and

31

systematic orientation for transfer was lacking. These researchers
went on to conclude that when positive results were found for the Logo
environment, such as with the Clements and Gullo studies, explicit
instruction for transfer was typically present in the treatment.

In related research discussion, Delclos, Littlefield and Bransford,
describe a "mediational" style of programming which emphasizes this
apparent need for explicit orientation for transfer in the instruction.
When using this mediational style, a teacher makes specific attempts to
frame what is learned in the Logo lesson in a broader context and to
bridge specific principles learned to other situations in which the
same type of strategy would apply (Delclos, Littlefield & Bransford,
1984). This style involves helping students to see themselves as
learners and to become actively involved in analyzing their own
thinking strategies. Students are encouraged, often by Socratic
dialogue between teacher and students, to generate general principles
in their programming activities and to relate these principles to
activities in different domains.

Suggestions for guiding the transfer of cognitive skills

When investigating how to facilitate the potential transfer of ;
cognitive skills from programming, it is important to consider that the
general "transfer" of cognitive skills between domains has been
investigated by a variety of researchers in many fields (Gick & Holyoak,
1983; Cormier & Hagman, 1987; Swan & Black, 1987). One particular

32

theory for looking at the transfer potential of computer programming
has been advanced by Salomon and Perkins (1987). This theory
suggests two possible cognitive paths to transfer: 1) low road transfer,
and 2) high road transfer.

In low road transfer, near, or same domain transfer, can be
achieved by extensive practice which attains an automaticity of a skill.
For example, a person learns to drive a car so well by extended
practice that other relatively similar cars are driven easily. Thus, a
student programmer may become better at specific programming skills
within Logo merely by being exposed to a large number of similiar
programming problems. Yet none of these skills will be of much use
outside of the programming domain; transfer will be relatively near,
with little far transfer into non-programming domains.

In high road transfer however, more distant, different domain
transfer may be achieved. To facilitate such transfer, extensive
practice is unnecessary, but fairly extensive concentration and mental
abstraction is. In this "high road" to transfer, a person "mindfully
abstracts” the skill to be learned so as to see it in a wider more general
context involving a variety of domains. Salomon and Perkins indicate
that for high road transfer, vigorous and direct instruction emphasizing
the general nature of the skill is often necessary to provide a relatively
far degree of transfer. Thus, if instructed correctly, a student driving a
car may also learn how to drive a truck, by participating in instruction
that emphasizes the general principles of driving. A student

33

programmer then, may improve their general problem solving
techniques by being involved in programing instruction that
encourages the student to mentally "abstract”, or generalize the
cognitive skills they use while programming.

Salomon and Perkins analyze the previous Logo research by
utilizing this model and indicate that some high road transfer
technique was generally used when positive effects for transfer
between domains were found. Thus in the Clement study, where
positive results were achieved, an instructional scaffolding for high
road transfer was employed. In the Pea studies, however, where no
positive transfer results were reported, this high road instructional
technique was absent. |

It is interesting to note that the Salomon and Perkin's model
suggests that extensive programming is not strictly necessary for
effective high road transfer of a cognitive skill into a non-programming
domain; since high road transfer necessitates intensive mental
abstraction and concentration, but not intensive practice. This aspect
of their model provides that students may not need to be involved in
extremely lengthy programming instruction before some transfer
between domains is expected. However, this would be true only if the
programming instruction is specifically geared toward mindful
abstraction ofi the skill targeted for trénsfer. Thus, students might be
able to attain useful levels of certain cognitive skills through
.programming instruction without being required to become

34

programming experts in the process. Salomon and Perkins indicate
that their model predicts transfer from even introductory
programming instruction, but only when the high road is "forced" by
instruction that directly and vigorously helps students to think about
programming in the abstract, as a general process incorporating and
practicing general cognitive strategies.

Pea, in earlier work summarizing the main conditions needed for
general transfer from the programming domain, seemed to incorporate
many of the later ideas expressed by both Salomon and Perkins (1987),
and Swan and Black (1987). He suggested that to facilitate general
transfer, programming instruction would need to: 1) train self
management skills, 2) explore the significance of thinking skills,

3) teach the intended skills using real world examples 4) use multiple
examples and situations, 5) apply a guided discovery approach in
teaching the thinking skills, and 6) provide a favorable motivational
environment (1985, p. 2-3). Thus, programming instruction seeking
the development of a generalized cognitive skill would probably need to
incorporate most of these conditions to create the systematic approach
necessary for the explicit teaching of that skill. When these conditions
are present, and the instruction "mindfully abstracts" the skill as a
general process applicable to other domains, some reasonable hope of

transfer could be warranted.

35

The need for research to test current suggestions for transfer

It is important to note however, that the suggestions for a guided
instructional pedagogy to achieve generalized transfer from
programming, as discussed by researchers such as Swan and Black, and
Salomon and Perkins, are still relatively new in the literature. As with
research dealing with the general cognitive benefits to programming,
empirical studies attempting to test the effectiveness of the
suggestions put forth by these researchers on specific cognitive skills
are not yet available. Most of the research suggesting the necessity to
"guide" transfer in programming and offering suggestions on how to do
so (such as Leron, 1985; Mayer, Bayman, Dyck, 1987; Salomon and
Perkins, 1987), is discussion papers rather than empirical studies.
Such conjecture is very important, but experimental research is
needed to tesi the validity of these suggestions, and to evaluate the

relative importance of the programming component.
Analogical Reasoning and Its Instruction.

Analogical reasoning is one particular cognitive skill that seems
especially worthy of any efforts to develop and transfer it. It has been
recognized as an important human intellectual skill. In 1956, J.R.
Oppenheimer wrote "Analogy is inevitable in human thought" (p. 129).
More recently (1982), in his book The Universe Within, Morton Hunt
echoed this respect for analogical reasoning and suggested that it was

36

the most important of all our reasoning processes, encompasing the
chief way in which we interpret and deal with the world around us.
Both researchers were commenting on the centrality of analogical
thinking in daily life; as people continually transfer knowledge from
known situations to novel ones. Similar statements, emphasizing the
fundamental importance of analogical reasoning, are often found in
research regarding this skill (i.e., Holyoak, 1984; Sternberg, 1977b;
Moore & Newell, 1973; Newell & Simon, 1972).

What is analogical reasoning?

Analogical reasoning can be defined as the ability to utilize a well
understood problem to provide insight and structure for the
development of a solution for a less understood problem (Gentner,
1982). Thus, it is this reasoning process which gives us the basic
ability to solve a current problem by referencing similarities to previous
problems we have encountered. As suggested by Gick and Holyoak, the
"essence of analogical thinking is transfer of knowledge from one
situation to another by a process of mapping; finding a set of one-one
correspondences between aspects <f one body of information and
aspects of another" (1983, p. 2). Analogical reasoning would seem to
be one of the most important skills, if not the most important skill, in
general problem solving. George Polya, who has written extensively on

problem solving in the mathematics domain, writes: "Inference by

37

analogy appears to be the most important kind of conclusion, and it is
possibly the most important" (1954, p. 43).

Analogical reaéoning has also been linked to schema theory. A
"schema" can be thought of as an organized body of knoWledge
conceived theoretically as a set of interconnected propositions
centering around a general concept, and linked peripherally with other
concepts (Gagne', 1986). This theory, becoming a formally accepted
theory of cognitive psychology (Wicks, 1986), indicates that schemas
provide internal structure for the assimilation of information in the
human mind, and are used as cognitive frameworks for information
processing. Analogical reasoning has been said to occupy a generative
role in this £heory, as a process which creates new schemas (Gentner,
1982; Gentner & Stevens, 1983). New cognitive schemas are
theoretically created by the analogical process of deleting differences
and identifying similarities between cognitive structures (Gick &

Holyoak, 1983).

mponent processes in _analogical r nin
As analogical reasoning operates in an individual to transfer and
build knowledge, it appears to use specific and identifiable component
processes. In extensive research on analogical reasoning, Sternberg
has outlined four required component processes that make up the skill
(Sternberg, 1977a; Sternberg & Rifkin, 1979). These processes

are: 1) encoding, where attributes of concepts are identified,

38

2) inference, where rules between concepts are discovered,

3) mapping, where a higher order rule relates rules to each other, and
4) application, where a rule is generated from an old concept to a new
concept by use of an analogy. Two optional later components have also
been included in his theory to encompass the typical structure of
multiple choice analogy tests: 5) justification, used to determine the
best option when various options are generated in the application
component, and 6) response, where a choice selection is actually made
to complete the analogy. The component processes are assumed to
operate serially, immediately following each other, with movement to
the next component facilitated by problem limits or selective attention
imposed by the reasoner. Sternberg believes that these components
are generalizable to a wide variety of inductive reasoning tasks,
especially tasks where the solutions are uncertain.

In a model similar to the Sternberg model of component
processes in aﬁalogical reasoning, Mulholland, Pellegrino and Glaser
(1980), incorporated some of Sternberg's ideas (1977a), with artificial
intelligence research by Evans (1968), and with their own
modifications to develop a more generalized model of this reasoning.
Their model used three general classes of internal processes:

1) attribute discovery and encoding processes, where important
attributes of each part of the analogy are represented in memory,
2) attribute comparison processes, where relationships between

analogy parts are inferred, and 3) evaluation processes, where the

39

appropriateness of possible completion items is determined.
Specifically, the Mulholland, Pellegrino and Glasser model expahded
Sternberg's encoding component and addressed this process in more
detail. These researchers felt this modification was necessary due to
the relative importance of this component to the rest of the
components following it. Validation of the model was based in part on
significant relationships found in a 1980 study, using 28
undergraduates exposed to 460 different analogy test items
(Mulholland, Pellegrino, & Glaser, 1980).

ized te fan ical reasonin

Component models of analogical reasoning, such as Sternberg's
(1977a), and Mulholland, Pellegrino and Glaser's (1980), have
extensively used tests with items in an analogy type format such as
hammer : nail :: bat : ?. These items often use either linguistic or
geometric relationships, and have been included on many standardized
psychometric tests. The reliability of such tests is typically high, with
intercorrelations between different tests reported as quite high
(Guilford, 1967, Ekstrom, French, & Harmon, 1976; Thorndike &
Hagen, 1971, 1987). The A:B::C:? item format seems to closely
represent the theoretical component processes of analogical reasoning,
and it has been suggested by various researchers that these tests are
relatively accurate indicators of general analogical reasoning skill

(Mullholland, Pellegrino & Glaser, 1980; Greeno, 1978; Sternberg,

40

1977b). In one particular investigation, incorporating analogies in this
format and involving students at Stanford University, Sternberg
(1977a), extensively tested and validated various mathematical models
for his component processes. Significant relationships were reported
supporting the generality of the analogical reasoning process. In a later
discussion of this work, Sternberg explicitly commented on the
construct validity of tests using the typical analogy format and declared:
“The construct validity of performance on tests of analogical reasoning

is unimpeachable" (1982, p. 237).

Analogical r ning in problem solvin

Holyoak, building on earlier work by Sternberg (1977a), Hesse
(1966), and his own work (Gick & Holyoak, 1980, 1983), has offered a
general framework for analogical problem solving using schema theory
(1984). He suggested that when a solution for a novel problem (the
target), is drawn from a previously solved problem (the base), possibly
existing in different domains, four general steps are used. These steps,
which are not necessarily implemented in the given order, are:
1) mental representations of the base and target problems are
constructed, 2) relevance of the target problem to the base problem is
noticed, 3) an initial partial mapping, or set of correspondences, is
found between the elements of the two situations, and 4) the mapping

is extended by retrieving 6r constructing new knowledge about the

problem.

41

As well as being founded on the work of previous researchers,
Holyoak based these steps partially on empirical research from his own
studies with Gick (1980, 1983). Four major embirical studies
supported his analogical problem solving framework. The first study
was used to establish the fact that people can use analogies to generate
problem solutions. In this study, 69 students in a high school class
were given problems in story format to solve with either first being
given an analogous story and solution, or a non-analogous story and
solution. Study results found that analogous stories significantly
facilitated the students ability to solve the target problem, p<.001.

The second study by Gick and Holyoak (1983), attempted to
experimentally separate the processes of noticing and applying
analogies. This study was similar to the first except for the addition,
for some subjects, of a verbal statement included with the initial
analogous story that made the underlying principle of the story's
solution much more apparent. Such a principle should theoretically be
used by the subject in developing a general schema for the particular
type of story and solution. Performance between the groups who
received analogous stories either with the verbal principle or without
the verbal principle was virtually the same. Gick and Holyoak believed
that this showed the relative ineffectiveness of incidental verbal

statements for general schema refinement in analogical problem

solving,

42

The third study by Gick and Holyoak (1983) investigated factors
involved in the degree of transfer from a single base problem to a
target problem. In this study, the second study was modified to
include incidental diagrams rather than verbal statements. It was
thought that incidental pictorial diagrams might be more facilitative to
general schema development. However, similar results to the second
study were found with no substantial differences between analogous
stories and analogous stories with diagrams.

The fourth and final major Gick and Holyoak study (1983), dealt
with transfer from multiple analogous stories, emphasizing the possible
necessity of providing multiple analogs for generalized schema solution.
In this study, 98 subjects were either initially given: 1) two analogous
stories, or 2) two non-analogous stories, or 3) one analogous story and
one non-analogous story, before being asked to find the solution of a
target story. The group given the two analogous stories was most
successful in finding the solution to the target problem, p<.003,
indicating that multiple analogs were the most helpful in the
construction a general schema for use in further solutions.

Gick and Holyoak indicated that these four 1983 studies
established general problem solving by analogy could take place, and
that multiple analogous problems greatly facilitated this problem
solving process. In analysis of a learner's ability to recognize that an
earlier problem could contribute to a current task, it was apparent

from these studies that learners were more likely to recognize prior

43

expeﬁences as relevant to a new problem when they had developed a
more abstract and general schema for sets of problem solutions rather
than drawing on specific individual experiences.

In a follow-up study to Gick and Holyoak's fourth study (1983),
Mathison and Allen (1987), found that exposure to a single analogous
story could yield greater success at determining a solution to a target
problem than multiple analogous stories, when a pictorial diagram was
included and students were directly instructed within the story to use
the diagram. In contrast to the Gick and Holyoak results, Mathison and
Allen found that diagrams greatly facilitated analogous solutions when
students were directly prompted to use them. Their results suggested
that "although multiple similar problem solving experiences may help
learners solve new problems analogically, the key variable is not the
number of experiences, but the manner in which they are presented
and processed" (p. 5).

It would seem apparent from results offered by Gick and Holyoak
(1983), and from the follow-up research by Mathison and Allen (1987),
that if learners are to be assisted in analogical problem solving, the
presentation method will be critical. Learners may need to be initially
prompted to notice and use a similar problem, or to notice and use a
general principle involving multiple problems.

Rumelhart and Norman (1981) have expressed the importance of
such analogical processes in the general teaching for all disciplines.
According to these researchers, teaching problem solving should

44

involve presenting information in a domain where the student is
already familiar, and then presenting information in a target domain
with a problem that varies 6nly slightly in the number of dimensions,
characteristics, or operations. For instance, a child would be taught
how to do a fraction problem, by first being presented with diagrams of
fractional pies. Such problem solving by referencing better understood
problems or problem domains, is very typical of natural real life
problem solving (Gentner, 1982; Gentner & Stevens, 1983; Gick &
Holyoak, 1983, Rumelhart & Norman, 1983).

Th ining of analogi } I nin

Although research in the theoretical aspects of analogical
reasoning seems fairly well developed, research involving the
application of these theories to educational techniques seems much
less so. With the exception of studies by White and Alexander (1984),
and Alexander et al. (1987), few studies have attempted to actually
train analogical reasoning within the dynamic environment of the
typical classroom. Most of what has been done, such as work by
Sternberg, Ketron, and Powell (1982), has been accomplished in the
relatively stable environment of the laboratory. Other studies, like Gick
and Holyoak (1983), have investigated general processes underlying
analogical reasoning, but have offered only peripheral suggestions for

classroom application.

45

Many college critical and creative thinking courses, however, still
inéorporate some instruction in analogies (Halpern, 1987). This may
be due in part to the poor performance of even college aged adults on
general reasoning tasks where analogical type reasoning is
incorporated. Research by McKinnon and Renner (1971) found that
only 25% of first-year college students scored at the Formal Level of
thought on Piagetian tests (1971). Other researchers, such as
Nummedal, have stated concern that most adults are functionally
unable to use formal reasoning processes by indicating that studies in
the area indicate that "Less than 50% of the students in our
universities are able to use formal reasoning processes confidently and
reliably" (1987, p. 87). In light of such research, there would seem to
be an apparent need to provide some general analogical reasoning
training within our educational system.

Unfortunately, due to the lack of classroom research, it is unclear
whether laboratory implications of analogical reasoning can be applied
successfully to the typical classroom environment. It would appear that
to successfully apply laboratory established theories to classroom
applications, some systematic method to do so may be necessary.
Training in analogical reasoning, like other cognitive skills, should
probably be systematic and deliberate if it is expected to transfer
across domains for general use.

In research attempting to train analogical reasoning in the
classroom, and to apply laboratory established principles to the

46

classroom environment, Alexander, White, Haensly, and Crimmins-
Jeanes (1987) tried the direct instruction of analogies with fourth
graders. They had piloted the study a few years earlier (White &
Alexander, 1984). Within their recent study, these researchers used
Sternberg's four mandatory components of analogical reasoning as an
instructional framework for direct lessons in analogies, and then
extended the process to reading comprehension tasks. Their training
involved two phases. Phase one was an initial training phase where
students received intensive instruction in the component processes of
analogical reasoning. This phase used an instructional approach which
permitted varied practice and classroom discussion, incorporating
student verbalizations of each component as they were used on
problems. The treatment in this phase consisted of one 50 minute
session for each of the four components. The second ;Shase of
instruction consisted of six weeks of intermittent training involving
general application of the four components. Training during this phase
also sought to incorporate stories as well as standard word analogies.
Significant effects of training were found, with implications of near
transfer given by significant results on verbal analogies of the Woodcock
Reading Mastery Test, p<.002. However, significant effects were not
found for reading tasks of the Comprehension Inventory, p>.05,
implicating that no far transfer had occurred.

In a second follow-up study to look at the influence of age and

ability on their results (1987), Alexander, White, Haenlsy, and

47

Crimmins-Jeanes repeated their first study with 34 eighth graders
enrolled in an honors language arts class, and 96 tenth graders
enrolled in a non-honors English class. Positive effects for group,
p<.001, and for grade, p<.002, were found within the analysis.
Alexander, White, Haensly, and Crimmins-Jeanes, concluded that
these two studies demonstrated that "componential analogical
reasoning training could be provided in the uncertain and dynamic
context of the classroom" (1987, p. 401). Also, they believed their
work demonstrated that analogical reasoning training could be
successfully provided to older students, and to students of gifted and
average abilities. These researchers were careful to note however, that
analogical reasoning is a rather complex and global skill, and that
speculations regarding the impact of their training on overall analogical
reasoning ability should remain cautious.

The need to consider possible interactions

Interpretation of the effects of a particular treatment, such as
analogical reasoning training, operating with a particular set of
students often warrants caution. In educational research it is
important to consider that the typical classroom usually consists of a
heterogenous group of students displaying a variety of characteristics.
Each student may bring to the learning environment a unique set of

attributes, learning styles, relative abilities, and past achievements.

48

The potential for interactive effects of student charécteﬂsucs.
with instructional treatment is well established in educational research
(see Cronbach & Snow, 1977; Snow 1977; and Holtan, 1982). Often,
student characteristics with a potential for interaction can be
considered as one of three general types: 1) student ability, 2) student
aptitude, or 3) general student attributes. However, some overlap of
this terminology is often present in the literature (Federico, 1978).

Student ability, as used in treatment interaction research, is often
associated with a relative level of a particular cognitive skill, such as
spatial visualization, verbal fluency, etc. However, many researchers
have settled on the construct of "general ability" in looking at
differential effects of an instructional treatment across student .
subgroups (Cronbach & Snow, 1977). More recently, "general ability"
has been subdivided into "crystalized ability", representing cognitive
skills applied to a more familiar situation, and "fluid ability",
representing cognitive skills applied to a newer less known situation
(see Snow, 1980; Hart, 1986). High crystalized ability would indicate
efficiency in the routine application of stored knowledge, where new
tasks are quite similar to previous ones. High fluid ability, however,
would indicate efficiency in adapting this stored knowledge, often
spontaneously, to tasks substantially different than ones encountered in
the past. The possible interactive effect of such relative student ability,

with a specific instructional treatment, is one of the most consistent

49

interactions in educational research (Wittrock, 1974; Anderson, 1982;
Snow and Lohman, 1984).

In contrast to student ability, which focuses on a relative level of
cognitive skill, student aptitudes give more emphasis to the actual form
and structure of cognition. Student aptitudes usually consist of
differing cognitive styles or learning preferences (Federico, 1978).
Student aptitudes also have been shown to have a potential interactive
effect with instructional treatment. For example, student "field
independence” or "field dependence" has been shown to have general
interactive effects in the learning of mathematics (McLeod and Adams,
1980; McLeod and Briggs, 1980). Other examples of student aptitudes
thought to have possible interactive effects are locus of control, brain
hemispherisity, and cognitive complexity (McLeod, 1979; De Leeuw,
1983).

Student attributes, rather than being associated with level or
structure of cognitive processing, typically refer to the more _
fundamental characteristics of a student, such as gender and age. The
potential fcr age related differences in cognitive processing has been
well established (Goldman, Pellegrino, Parseghian, & Sallis, 1982;
Goldman & Bisanz 1980; Lawson, 1982, Sternberg & Downing, 1982),
and research considering gender differences in the learning of
mathematics has been evolving for some time (Schildkamp-Kundiger,
1982). In addition, general past achievement has been shown to have

consistent interactive effects with cognitive instruction (Tobias, 1976) .

50

It seems apparent that research investigating the classroom
training of analogical reasoning must also carefully consider the
possible interactive effects of individual student characteristics. When
being instructed in such a global and complex problem solving skill as
analogical reasoning, students with varying characteristics may react
quite differently to an instructional treatment.

The need for additional research in classroom instruction

Although research involving the processes of analogical reasoning
is fairly well developed, research involving the application of these
processes to instruction and training in the classroom is in a relative
infancy. There is substantial work to be done before analogical
reasoning instruction can be incorporated systematically and effectively
into the classroom. As suggested by Alexander, White, Haensly, and
Crimmins-Jeanes (1987), regarding further research needed in their
analogical reasoning based instructional work:

"It is for future research efforts to support the
conclusions of this study by demonstrating further the
facilitative effects of classroom-based, componential
training in analogical reasoning. It may prove useful for
future studies to examine alternative near and far transfer
tasks, to test the effectiveness of analogy training

embedded in different content areas such as

51

mathematics or science, or to provide such training to

students younger or older than those in the present

study" (p. 402).

When considering the research reviewed regarding analogical
reasoning, strong implications for specific additional studies become
apparent. Research in this area is at a point where investigation
concerned with the actual classroom impiementations of more
fundamental research is imperative. Research is needed that testé
applications of componential analogical reasoning training in the
classroom environments of various disciplines, and with a divefsity of
students. A study incorporating analogical reasoning training within
the domain of computer programming, examining near transfer within
the programming domain, and far transfer beyond the programming
domain, may be just such a needed study. However, it is first necessary
to consider how analogical reasoning typically operates in the

computer programming domain.

The Relationship of Analogical Reasoning to Programming

As discussed by Pea and Kurland (1984a), computer programming
is indeed a complex task involving many essential skills. Analogical
reasoning has been suggested by researchers as one of the most

important of these skills; fundamental in the programming activity

52

whenever a programmer seeks to recognize aﬁd exploit the similarity
of different programming tasks (i.e., Kurland, Clement, Mawby, & Pea,
1987; Mann, 1986; Pennington, 1982, Sneiderman 1976). Many of
these researchers focus on the contrast between expert and novice
.programmers when discussing how analogical reasoning typically
operates within the programming domain.

Analogical r nin vi r I

Analogical reasoning has been linke«l to programming by
investigations of how expert programmers generally approach
programming problems. When confronted with a new programming
problem, an "expert" programmer will often tend to perform an
internal search for prograrhming problems of a similar nature that they
héwe encountered in the past (Brooks, 1977). These earlier problems,
and their respective solutions, provide the expert with an internal
"storehouse" of general sub-routines and structures potentially useful in
developing or determining a solution to the new problem. The expert
looks at similarities between the problems, and eventually attempts to
transfer a solution framework from one problem to the other. This
analysis of something new in their programming experience, by
utilization of something old in their programming experience, is

essentially the process of analogical reasoning as defined by Gentner

(1982).

53

In contrast, novice programmers tend to focus on the lower level
aspects of a programming activity, such as the syntactical structure of
the program code (Sneiderman, 1976; Sneiderman & Mayer, 1979;
Onorato & Schvaneveldt, 1986). In a study by Adelson (1981) five
novice programmers and five expert programmers were given 16
randomly shuffled lines of programming code and asked to memorize
as many lines as possible after being shown each line for a 20 second
interval. In comparing the recalled lines of the novices and experts, it
was found that the experts not only recalled significantly more lines
than novices, but also grouped these lines into meaningful "chunks"
which related to procedural or functional aspects of the program. It
was believed that experts were using internal representations of
previously encoded programs to meaningfully group the newly
memorized lines of code. The novices, however, used smaller less
meaningful chunks, and organized these around more superficial
syntatic aspects of the code. Novices, unlike the more successful
experts, seemed unable to draw analogies to the more functional and
structural aspects of programs, to assist in their mental grouping of the
lines.

Such differences in cognitive behavior have also been observed in
program debugging attempts by novices and experts. In two studies by
Gugerty and Olson (1986), novices and experts were asked to debug
three Logo programs and three Pascal programs having a single bug in
each. Using transcripts of the online debugging experience, experts

54

were found to correct the bugs much more successfully than the
novices by use of carefully formulated hypotheses about where the bug
might be, as determined from symptoms of the output. Novices,
despite spending as much time as experts in thoughtful analysis of the
program, were unable to create quality hypotheses regarding the
possible location of the bug. In addition, they often added new bugs to
the program when attempting to correct the original bug. Since
experts and novices distributed their debugging activities in about the
same overall way during the activity, it was believed by these
researchers that a qualitative cognitive difference between the experts
and the novices was being observed. They speculated that the experts
were more efficient at the inherent encoding process used in forming
successful hypotheses of bug location, and could draw on a large library
of symptom-bug associations in forming specific hypotheses. Such a
systematic mapping process, as exhibited by the experts, would fit the
analogical reasoning definition of Gentner (1982).

Analogical reasoning through programming

Based partially on the analogical reasoning behavior of
programming experts, researchers are beginning to target analogical
reasoning as a specific cognitive skill with the potential for direct

practice and development in computer programming. In a

correlational study, Clement, Kurland, Mawby, and Pea (1986) looked

specifically at analogical reasoning and the reuse of subprocedures in

55

Logo programs of seventeen ninth, tenth, and eleventh grade females.
Using a programming task developed in an earlier study (Mawby,
1984), these researchers attempted to correlate various aspects of the
student programs with success on a Gick and Holyoak analogical
reasoning task. Outcome variables on the programming task involved
scores for programs correct, number of commands used, correct use of
subprocedures, correct use of repeat statements, correct use of
variables, and reuse of subprocedures across programs. The only
significant correlation to success on the analogical reasoning task was
the reuse of subprocedures across programming problems, p<.01.
Clement, Kurland, Mawby, and Pea felt that since reused
subprocedures implied a structure mapping between programming
problems, this variable was probably the most indicative outcome
variable of student analogical thinking within the programming activity.
Encouraged by results isolating the reuse of subprocedures variable as
the only significant correlation to the analogical reasoning task, and the
inherent nature of analogical reasoning within the programming
process, these researchers felt that "analogical reasoning could develop
through programming because it underlies certain programming
practices and because programming involves a focus on abstract
structural relations" (p. 484). They were careful to.emphasize the
correlational nature of their study however, and that the complexity of

these relationships implied that the transfer of analogical reasoning

56

skill, as well as other cognitive skills from programming, may need to
be directly supported, rather than expected to occur spontaneously.
Swan and Black, in their investigation of the cross-contextual
transfer of problem solving skills (1987), included the investigation of
analogs as one of the six problem solving skills that they targeted for
improvement by guided Logo programming instruction. These
researchers believe that the analogical reasoning process is inherent in
a programmer's analysis and refinement of computer code, as the code
is systematically modified by the programmer based on the output it
produces when implemented by the computer. As suggested by Swan
and Black: "we believe programming environments inherently support
the development of analogy, in that one is always mapping between
‘computer code and program output" (1987, p. 8). They found a
significant difference for improvement on an investigator constructed
analogieé test, of the form Gun:Bullet::Bat:?, p<.01. This was true
whether program output was in the form of words and lists, turtle
graphics, or a combination of the two types of output. However, as
discussed earlier in this chapter, it is difficult to say how significant a
role the activity of programming played in the actual development of
the demonstrated analogy skill; as the guided instruction methodology
employed substantial off computer tasks, focused on solving analogies,
before the programming activity began. Swan and Black did not

attempt to investigate this contingency, which would have necessitated

the use of a control group.

57

While Swan and Black looked at analogical reasoning as one
problem solving skill of six targeted, and focused on the design of the
guided instruction, a study by Mann investigated analogical reasoning
skill more directly as a potential benefit to programming (1986).
Matching by sex, and scores on a pretest of the outcome measure,
Mann used two groups of eighth grade students to participate in the
ten week study. The experimental group received instruction in Logo
focused on eight modules ranging from the use of primitives to
recursion. The control group did not use Logo at all, but was involved
in word processing and computer assisted instruction in the content
areas of reading, math, english, and science. Analogical reasoning skill
was evaluated by use of the Cognitive Abilities Test-Nonverbal Battery.
Mann found a significant positive effect for the Logo treatment, p<.05.
No differential gains between males and females were observed.

Mann's results encouraged him to suggest that "Logo may be
influential in' facilitating the development of analogical problem solving
strategies" (p. 76). Mann investigated programming and analogical
reasoning using Logo in a fairly traditional Logo programming
environment with extensive experimentation combined with teacher
and student generated goals. No specific instructional guidance was
incorporated to target the skill of analogical reasohing; it was merely
investigated as a potential outcome to the general programming
instruction. For this reason, Mann suggested that further

investigations were needed, perhaps with different age groups and

58

ability levels, but especially research using more "guided" programming
instruction, which explicitly incorporated and targeted the skill of

analogical reasoning in the programming environment.

Analogical reasoning components through programming

As previously discussed, analogical reasoning has been
investigated as a skill which can be broken into specific component |
processes (Sternberg, 1977a,b; Mulholland, Pellegrino & Glaser,
1980). Sternberg proposed the processes of encoding, infering,
mapping, and applying as mandatory components in the general skill of
analogical reasoning. The Logo programming language uses a structure
which can potentially support the development of component skills,
sucl: as the analogical reasoning components described by Sternberg.
The modular nature of the language makes it especially conducive to
the explicit practice of the component processes involved in many
cognitive skills. Clements and Merriman (1987), in their recent
discussion of componential developments in Logo programming
environments, describe how children programming in Logo might

employ component processes:

"Children who begin a Logo project may start by making a
drawing, (their problem goal). They might selectively
encode parts of that drawing to determine basic shapes that

can be disembedded and constructed as procedures. In

59

addition, they might encode the salient properties of shapes
and relationships among shapes. They then might
selectively compare their present problems with past
procedures to determine if these old procedures and the
methods used to construct them might assist in solving
problems at hand. Children also might selectively combine
procedures to create numerous figures from a limited
number of components and, more importantly, combining

parts of a problem solution into a unified whole" (p. 4).

Analogical reasoning and the programming environment indeed
seem well intertwined. As old problems are searched to provide
insight into the solution to new problems, the various component
processes of the skill (such as Sternberg's éncoding, infering, mapping
and applying), appear to be in genuine operation. As stated by
Clements and Merriman: "It becomes apparent that the Logo
environment could serve as a vehicle for the development of
componential skills" (1987, p. 8). There would seem to be implication
that analogical reasoning could be fostered by Logo programming

carefully targeted at the component processes of the skill.

60
Summaljy

The purpose of this chapter was to review previous research
related to Logo programming instruction and the potential
development and transfer of analogical reasoning skill. Two main
bodies of research were tapped in this literature review: 1) research
involving the development of cognitive skills from computer
programming, and 2) research involving the training of analogical
reasoning. Research in each of these two areas has developed relatively
separately.

Research involving the development of gerieral cognitive skills
from computer programming has been an area where anecdotal
observations and contemplative discourse has dominated. These
observations have tended to suggest that computer programming offers
a potential for the development of general cognitive skills, but that
such development may rest substantially on the instructional
environment included in the programming activities. The necessity of
further research, preferably of an empirical and focused nature, has
been declared by many researchers (i.e., Pea, 1983; Khayrallah & Maud
Van Den Meiraker; 1987; Walker, 1987).

Research involving the classroom training of analogical reasoning
is in early stages even though, somewhat ironically, theoretical
research on the skill itself has existed for some time. Researchers,

based on laboratory investigation, have broken the skill into various

61

. component processes which may offer a useful and practical framework
for classroom training. The need for further research, actually
attempting to train analogical reasoning in the classroom, and
incorporating it into a variety of content areas has been suggested
(Newby & Stepich, 1987; Alexander, White, Haensly, & Crimmins-
Jeanes, 1987; Mathison & Allen, 1987).

It seems from a review of the research investigating the
development of cognitive skills from programming, and the research
investigating the classroom training of analogical reasoning, that these
two research areas can act as a catalyst to each other. Research
investigating the development of cognitive skills from prograinming
has been weakened by a lack of empirical studies focusing on sp'ecific
cognitive skills. Analogical reasoning, with its extensive theoretical
foundation and fundamental link to the programming process, is one
cognitive skill worthy of specific targeting in programming studies.
Similarly, research investigating the training of analogical reasoning is
in its infancy, requiring further research in a variety of classroom
settings and content areas. Computer programming, with its explicit
nature and inherent use of analogical problem solving, is one content
area that seems unusually appropriate for the investigation of such
training,

It would seem that a necessary research step toward the
understanding of the potential cognitive benefits of computer

programming, and toward the identification of potential instructional

62

methods for the classroom training of analogical reasoning, would be a
study attempting to instruct analogical reasoning by use of classroom
programming activities. Studies of this type would help overcome
limitations to research in both areas, and help narrow the gap that
often exists between educational research and classroom practice.

Such a study is described in Chapter Three.

63
CHAPTER III: METHODS AND PROCEDURES

This study investigated the potential of guided. Logo programming
instruction for use in the development and transfer of general
analogical reasoning skill. This investigation, focusing on analogical
reasoning as one specific skill, and guided Logo programming as one
particular method, should contribute to the continual search for
possible methods to instruct general cognitive skills.

This study incorporated research from two distinct areas:

1) research on the cognitive benefits to computer programming, and
2) research on analogical reasoning. It was determined that a specific
study attempting to develop analogical reasoning through guided
computer programming would help meet research needs in both of
these areas.

In investigating the potential of guided Logo programming
instruction for use in the development and transfer of analogical
reasoning, two particular effects of the instruction were considered
worthy of analysis. These effects were: 1) the far transfer effects of the
instruction, as measured by a standardized test associated with general
analogical reasoning, and 2) the near transfer effects of the instruction,
as measured by the reuse of subprocedures on a constructed test of
programming problems.

This chapter will discuss the methods and procedures used to
investigate these effects. The chapter was divided into five main
sections: 1) the sample of subjects used in the study, 2) the

64

instructional treatments developed for the study, 3) the research
instruments used to empirically investigate the effectiveness of these
treatments, 4) the research design and procedures used in conducting
the study, and 5) the directional hypotheses and analysis of data
procedures. These sections summarize the methodology that was
incorporated to investigate the potential of guided Logo programming

for use in the development and transfer of analogical reasoning.
Subjects

The subjects used in this study were students enrolled in the Fall
1988 class of Secondary Education 101, at Iowa State University. This
class was titled "Educational Applications of Computers”, and was an
educational computing class designéd to offer students in the teacher
education program an opportunity to experience and to gain
confidence in the use of computer technology as it can be applied to
education. The course outline included six major topics:
wordprocessing, Logo programming, databases, spreadsheets, desktop
publishing, and mainframe computer use. The Logo programming unit,
of three week duration, was used for the study.

The class had 171 students initially enrolled, with 144 of those
students included in the study. A total of 27 students were removed
from the sample for either failing to attend the class, or for failing to
consistently attend the portion of the class used for the treatment. As

65

a criteria for removal, students were allowed to be absent from only
one instructional period within the three week Logo unit. The 27
subjects removed from the study missed two or more periods within
that unit.

Students in the sample were given a brief questionnaire to
investigate the homogeneity of their backgrounds. The questionnaire
has been given at the beginning of the course to help prepare yearly
revisions to course content. It included items asking for college major,
computer programming experience, computer access, mathematics
course experience, computer anxiety, current grade point average, age,

year in school, and gender (see Appendix A).

College major of subjects

The majority of the students enrolled in the course are usually
elementary education majors. The entry questionnaire confirmed this,
as 66% of the students listed elementary education as their major.

The remainder of the sample included 6% of the students who listed
secondary education, 9% who listed physical education, 8% who listed
agricultural studies, and 11% who listed non-teacher education or
agricultural majors such as business. The substantial number of non-
teacher education majors was common for the course, as it drew a
significant number of students from other colleges who were

interested in taking the course for the experience it provided in

66

microcomputer based wordprocessing, database, and spreadsheet

applications.

Age. year, and gender of subjects

The mean age of the students was 21.3 years, with a range of ages
from 17 to 42. The majority of the students were of typical college
age, however, with 74% of the students between the ages of 18 and 21,
inclusively. A relatively equal split between each college class was
represented in the sample. The questionnaire data indicated that 31%
of the students listed themselves as freshman, 22% listed themselves
as sophomores, 26% listed themselves as juniors, and 22% listed
themselves as seniors. The gender breakdown of the sample was 25%
male and 75% female. The elementary education majors had the
lowest male to female ratio, with only 12 males to 84 females.

Programming experience of subjects

The programming experience of the sample was quite limited.
The initial survey indicated that 78% of the students had not
completed a single programming class in college, and 18% had
completed only one class. The students who listed one class, as well as
the 4% of the sample who listed more than one class, commonly listed
classes which were probably not strictly programming classes, such as
a computers in business course. High school programming experience

was also fairly limited. Questionnaire data indicated that 44% of the

67

students listed no high school programming course, aﬁd 47% lisfed
only one course. Generally, students reported a single course in BASIC
programming as their only high school programming experience, if
they had a programming course in high school. Students who listed
more than one course, accounting for 9% of the sample, also
commonly listed high school courses which were probably not strictly

programming courses, such as a business machines course.

Math background of subjects

The math background of the students in the sample was very
limited. Many of the students, 41%, had not yet had a college math
course. For the 31% of the sample who listed a single math course,
the course listed was usually the low level math course required for
elementary education majors. The students who listed two math
courses, accounting for 22% of the sample, often listed college algebra
along with this elementary education math course. Only 6% of the
sample i'eported having taken three or more college math courses,

with only four students listing any math course above college algebra.

mputer s and nervousn f e
From the survey it was apparent that for many of the students,
using a computer was still a new experience for them. A majority of
the students in the sample, 69%, indicated that they did not have

access to a computer outside of the university facilities, and only 11%

68

indicated that they had worked with a computer at all outside of their
high-school and collége course work. In response to the question
about how nervous they felt about their upcoming computer
experiences in the course, 13% of the students responded they were
very nervous, 26% responded that they were somewhat nervous, 41%

felt neither nervous or confident, 16% felt somewhat confident, and

4% felt very confident.

Summary of sample characteristics

In summary, the majority of the students in the sample were
female elementary education majors. However, a small but significant
number of students were male agricultural education majors, with a
variety of other majors represented in the sample. Most of the
students in the sample had reiatively little experience in computer
programming, and had taken very little mathematics at the college
level. Students in the sample also reported very little experience with
computers outside of their academic work, and a little less than half of
the students in the sample expressed some degree of nervousness

about their upcoming computer experiences.
Treatment Groups

In order to investigate the potential of guided Logo programming

instruction for use in the development and transfer of analogical

69

reasoning, the sample was broken into two distinct treatment groups.
The experimental group was involved in programming instruction that
systematically guided students through a structured process of
analogical reasoning, and encouraged students to use this process in
the planning of their programs. The control group used a more
traditional approach to Logo programming instruction, and gave
students a large degree of freedom in the planning of their programs.

To help ensure that both treatment groups received the same
instructional content, and that only the instructional methodology
itself was varied, both groups worked through the same set of in-class
problems and examples. Programming problems were presented to
students in both groups on prepared notesheets roughly structured
along Polya's four steps to problem solving. This approach was used to
'remind students and teachers of the sequence of instruction for their
respective groups. Such worksheets were also thought to be helpful in
preventing "overloading" the students with the combined cognitive
demands of both the instructional content and instructional strategy,
especially in the experimental group. The use of such structured
notesheets is suggested by Perkins, Simmons, and Tishman, as a
possible way to help students manage the additional cognitive load of
instructional strategies (1989, pp. 13-16).

Content ranged successively from simple procedures and turtle
graphics, to more difficult problems utilizing multiple variables and
recursion. As a resource for course content, the textbook, LogoWorks:

70

Lessons in Logo, by the Terrapin Logo Company was used to provide

examples and problems. Content sheets for the experimental and

control groups are given in Appendices B, C, D, and E.

Th rimental group: gui Lo rogramming in ion

The guided Logo programming group acted as the experimental
group for the study. For this group, initial program planning was
structured to explicitly emphasize the skill of analogical reasoning.
This involved stepping students through a careful problem solving
strategy that analyzed a previously completed programming problem to
help find insight into the solution of a new programming problem.

The experimental group was required to use this particular strategy
whenever they planned a program to accomplish some output.

This instructional treatment, which involved programming
activity focused on the general development and transfer of analogical
reasoning, sbught to incorporate the three pedagogical elements
suggested by Swan and Black as common to studies reporting positive
results of cognitive skill transfer from Logo programming (1987, pp. 6-
7). The three transfer elements suggested by Swan and Black were
that the instruction: 1) focus on specific problem solving aspects or
skills, 2) directly instruct the targeted skills, and 3) utilize a mediated
learning approach to student and teacher interaction. Each of these
components was explicitly addressed in the instruction of the
experimental treatment group. This approach helped ensure that the

71

instruction targeted the development of a géneralized analogical
reasoning skill, rather than a skill specific only to the computer
programming domain.

First transfer element In meeting Swan and Black's first
pedagogical transfer element, a focus on specific aspects of the
problem solving process, the ekperimental group emphasi;ed the
analogical reasoning process inherent in programming, rather than the
programming activity itself. To help provide this reasoning emphasis,
students initially spent about 15 to 20 minutes working through the
analogical reasoning planning activity before ever turning on the
computer. The instructor would lead students through this planning
process by active class discussion, or by walking around and ensuring
that everyone was activély engaged in the step-by-step process as it
was outlined ori the instructional worksheets. Students were
reminded that they were using the computer programming activities
as a way to practice the general analogical reasoning process, with the
learning of this general reasoning strategy as an important goal in their
programming instruction. Thus, students were practicing and focusing
on a specific problem solving process or reasoning skill, but were
applying it where it would be currently most useful to them, during the
initial planning of an assigned program. |

Second transfer element To meet Swan and Black's second
pedagogical element and directly instruct the skill of analogical

reasoning, Sternberg's four main component processes of analogical

72

reasoning (1977a) were used as a framework for planning the student
programs (see Appendix F). The components of encoding, inferring,
mapping, and applying, were directly incorporated into structured the
discussions which were used with students to help initially plan their
programs (see Appendices B aind D). This approach resembled the
process used in the work by Alexander, White, Haensly, and Crimmins-
Jeanes, with linguistic analogies (1987). In their study, instruction
was designed so that students systematically worked through each
component as they planned programs to give some desired output.
The turtle graphic capability of Logo made it especially conducive to
providing the opportunity for well-structured and focused
programming examples of these component processes. Using the
A:B::C:D analogy format, the programming activities were structured by
the pairing of program output with corresponding program text.
Students were prompted, by use of the four components, to actively
use the graphical output and program text of a previously solved
problem to find insight into developing the text of a new programming
problem. The use of the Sternberg Component processes carefully
structured the cognitive tasks of writing the new program, and met
the definition of direct instruction as expressed by Doyle (1983).
Third transfer element To provide a mediational approach to
interactions by teacher and students, and to meet Swan and Black's
third pedagogical element to encourage transfer, a class discussion

style was patterned after the suggestions of Delclos, Littlefield, and

73

Bransford (1984). In their work, they suggested that in a mediational
style of teaching Logo the teacher should make "concious attempts to
frame what is learned in the Logo lesson in a broad context and to
bridge specific principles learned to other situations where the same
type of strategy would apply” (p. 9). Within the experimental
treatment, students were periodically given other examples illustrating
the use of the Sternberg analogical reasoning components, and
discussed how the reasoning process was similar to what they were
using in the programming domain. The teachers continually tried to
emphasize to students that they were using the skill of analogical
reasoning to help solve problems in computer programming, but that
the skill could also help them solve problems in other areas.
Additionally, when students asked specific questions about errors in
their programs, teachers tried to respond in a Socratic type format,

referencing the analogical reasoning process whenever possible.

The control group: traditional Logo programming instruction

A group involved in programming instruction incorporating a
more exploratory and traditional type Logo environment was used as
the control group in the study. In contrast to the experimental group,
the control group instruction did not focus directly on the cognitive
skill of analogical reasoning. Ixistead. the instruction provided as much
student freedom as possible in planning of the solution to each

assigned programming problem. As with the experimental group,

74

students in the contrdl group were given programming problems
which were specified on notesheets. Polya's four steps to problem
solving were used as a structure for the notesheets, to help teachers
and students sequence instruction (see Appendices C and E). The
control group, however, did not use the Sternberg component
processes in the planning stage of a program. At this point in the
instruction, control group students were told to write a program to
accomplish a specific output, and that previous work might or might
not be helpful.

Teachers working with the control group, as with the
experimental group, were careful to try to maintain, as much as
possible, a traditional Logo programming environment while students
worked at the computer. Teachers avoided stepping in to help
students unless they specifically asked for assistance, and then tried to
assist students only by asking them small Socratic questions rather
than by giving them specific answers.

The control group instructional sequence provided that students
in this group were on the computer approximately twice as long as
those in the experimental group. During the time that students in the
experimental group were planning their solutions by use of the
analogical reasoning components, studénts in the control group were
actually trying to program and experiment with their solution on the
computer. This additional exploration time was thought to be
conducive to the more traditional Logo approach.

75

umm f reatmen

In order to investigate the potential of guided Logo programming
instruction for use in the development and transfer of analogical
reasoning, it was necessary to use two distinct treatment groups. The
experimental treatment group used a methodology that sought to focus
on the skill of analogical reasoning and encourage its general transfer.
This instruction relied heavily upon the suggestions of Swan and Black
(1987), for the effective transfer of specific cognitive skills. To meet
the requirements of these suggestions, the experimental treatment
used the Sternberg component processes of encoding, inferring,
mapping, and applying, to assist in directly instructing analogical
reascning while students were planning their programs. In contrast,
the instruction for the control treatment group did not actively
emphasizé the skill of analogical reasoning, and sought to allow
students as much freedom as possible in planning and testing their
own solutions to the programming problems. Finally, the instructional
conteﬁt was carefully controlled for both groups, so that the only
difference between the groups was the instructional methodology
employed in delivering that content.

Research Instruments

Three instruments were used to provide measures of dependent

variables within the study. To evaluate the differences between the

76

groups in general analogical reasoning, the Cognitive Ability Test -
Nonverbal Battery, published by the RiverSide Publishing Company, was
used as an operational measure. To evaluate differences between
treatment groups in the reuse of program subprocedures, a
programming test developed and used by reseafchers Kurland,
Clement, Mawby, and Pea (1987; also Clement, Kurland, Mawby, & Pea,
1986) was slightly modified and used in the study. Additionally, to
determine if overall comprehension of the LogoWriter language had
been kept similar between treatment groups, and to provide insight
into results on the reuse of subprocedures instrument, a LogoWriter-
basic comprehension test, in a multiple choice format, was also

created and locally standardized.

The Cognitive Ability Test

This test was used to provide an operational measure of the
general analogical reasoning ability of the subjects. It was develbped by
Thorndike and Hagen and published by the RiverSide Publishing
Company. In this study, the Non-Verbal Battery of Form 4 - Level H,
was used to compare treatment groups.

The Nonverbal battery is composed of three separate subtests that
involve geometric type problems, presented in three different formats,
developed to reflect the problem solving behaviors in general
analogical reaéoning. The three subtests are Figure Classification,
Figure Analogies, and Figure Analysis. The first subtest, the Figure

77

Classification test, required students to determine what features three
geometric figures have in common and to select an additional figure
with the same common features from five different response options.
The second subtest, the Figure Analogies test, required students to
complete a geometric analogy of the A:B::C:? form by determining the
relationship between two geometric figures, and then selecting one of
five options that duplicated the relationship between a third figure and
the selected figure. The third subtest, the Figure Analysis test,
required students to mentally fold a piece of paper and then punch it
with a éiven number of holes in a specified location. Students were
then required to select the response option that indicated how the
paper would look when it was unfolded. The score on each subtest was
determined by finding the number of correct responses for each
subtest. An overall composite score for the battery was computed by a
simple summation of these scores.

The Cognitive Ability Test has been extensively standardized, and
has a KR-20 reliability index of .91 for the Nonverbal Battery, as
indicated by the Preliminary Examiners' Manual (Thorndike & Hagen,
1987a). It is a commonly used test in research dealing with cognitive
development, and has been used effectively in studies investigating
analogical reasoning. Specifically, it was incorporated by Mulholland,
Pellegrino, and Glaser (1980) in their problem solving research of
geometric analogies and used to validate their model of analogical

78

reasoning, It was also utilized by Mann (1986) as an instrument to
examine the problem solving effects of Logo programming.

The Nonverbal Battery was considered appropriate for use in this
study due to the geometric nature of student output when using the
turtle graphic features of Logo. Since students would be involved in
programming problems that incorporated graphical output, an
operational measure of analogical reasoning that used graphical rather
than linguistic problems seemed the most conducive to observing
differences in treatment effects. It was assumed that scores on such a
test would give an indication of analogical reasoning skill that had
developed through the programming activities, but was not limited to
the programming domain. |

Thg reuse Qf §ubgrgg§durg§ prggramming test

This test was a slightly modified versior of a programming
proficiency test developed at Bank Street College by Kurland, Clement,
Mawby, and Pea (1987). It was originally developed to examine three
aspects of programming proficiency: reusability of code, flow of
control, and program decomposition. In designing the test, these
researchers were less interested in testing the knowledge of individual
commands, and more interested with assessing the comprehension of
the overall structure of the language and the pragmatics of
programming. The test originally consisted of five programming
problems, with two distractor problems, and was given as a thirty

79

minute paper and pencil test where students wrote programs for five
of the seven test problems.

In this study, the test was modified slightly, so as to more directly
compare student reuse of subprocedures between programming
problems. In adjusting the test, the two distractor items were
removed and the order of the problems fixed. The two distractor
items were removed because these output figures could not be broken
down into effective subprocedures. This modification also provided
that a more rﬁanageable number of problems, five rather than seven,
remained in the test (see Appendix K). The order of these remaining
problems were fixed by requiring students to attempt the five
problems in a specific order. This modification helped provide that
students would be compared on essentially the same task, with the
same problems in the same order. Additionally, to increase the overall
number of possible subprocedures, two of the output figures were
shaded, and three of the output figures were slightly enlarged, so that
two additional general subprocedures might be written by the students:
one that would shade figures, and one that would initially place figures
to avoid screen wrap around.

The test was administered in an on-line rather than paper and
pencil format to provide a more realistic and dynamic programming
environment. This online format also aided in securing data, as
programmed solutions could be saved on disk, checked by computer

execution, and analyzed from computer printouts; a far easier task then

80

trying to decipher a large number of student handwritten solutions.
The time limit was also extended to 60 minutes to provide students
with sufficient time to test and refine their solutions. Thus, except for
the extended online format, and the slight modifications necessary to
provide a more focused look at the student reuse of subprocedures, the
programming test was basically the same as that designed by the Bank
Street College researchers and used in their studies (Kurland,
Clement, Mawby, & Pea, 1987; Clement, Kurland, Mawby, and Pea,
1986).

To score the reuse of subprocedures on the test, similar scoring
procedures were used to those suggested by Kurland, Clement, Mawby,
and Pea (1987). First, subprocedures that were used in more than one
of the five problems Wére identified and listed. Then for each of these
reused subprocedures, a count was made of the number of problems in
which it was used. This process gave a number from two to five for
each of the listed subprocedures. The problem counts for each reused
subprocedure were then added up to create a total score. This total
score was assumed to represent the reuse of subprocedures for a
particular student.

The test targeted five types of potential subprocedures that might
be used by the students. They were: 1) a general rectangle procedure
that could be used in problems A, D, and E, 2) a general square
procedure that could be used in problems B, and D, 3) a general

shading procedure that could be used in problems C and E, 4) a

81

general horizontal and vertical move procedure, useable in problems A,
B, C, and E, and 5) a general initial placement procedure that would
need to be used in problems B, C, and E, to prevent screen wrap-
around. This plan provided that a student's reuse of subprocedure
score might range from zero to fourteen. Additionally, it was foreseen
that a student might write a general subprocedure for a rectangle and
also use this procedure to produce a square. In that situation, the
rectangle procedure would be tallied as being used in the observed two

to five problems, and the square procedure in none.

Writer ic comprehension

To determiné if general comprehension of the LogoWriter
language had been consistent between instructional treatments, a
LogoWriter basic c'omprehension test was developed for the study.
This instrument tested students on the fundamental commands and
concepts in the LogoWriter language that acted as the basic
programming content for the instructional treatments. It was decided
that such an instrument was especially needed to accurately interpret
eventual results on the reuse of subprocedures programming
instrument; results that might be heavily influenced by lower level
differences in basic undersfanding of the LogoWriter language. Since
both instructional treatments were to vary only in the delivery of the
content, and not in the content itself, this instrument also helped to
verify that both groups learned at least a minimum level of LogoWriter

82

commands and concepts. Thus, to help determine that any observed
reuse of subprocedure differences were indeed due to treatment
effects, and not to lower level comprehension differenceé, a 30
question multiple choice basic comprehension test was developed and
locally standardized (see Appendix L). It was determined from an
extensive literature search, and by correspondence with numerous
researchers, that no other suitable, previously developed instrument
currently existed.

A set of objectives was developed for the test to examine the basic
knowledge and understanding of the fundamental commands and
concepts within the LogoWriter language. The Logo assessment work
of Horton and Ryba (1986) was used to help focus test objectives on six
basic levels of Logo programming: 1) basic turtle commands, 2) repeat
commands, 3) defining procedures, 4) subprocedures and
superprocedures, 5) inputs and variables, and 6) recursion. Specific

test objectives for each of these levels were created with reference to

the guided instructional text: LogoWorks: Lessons in Logo, by Cory and
Walker (1985).

To help verify the content validity of the LogoWriter basic
comprehension test, four field experts were asked to evaluate the
instrument. These experts included one professor in computer
science, one doctoral candidate in computer science, one professor in
educational computing, and one professor in instructional psychology.
The instructional psychology professor was from the University of

83

Belgium; all other experts were from Iowa State University. All four
experts were very familiar with the Logo language and all but the
doctoral candidate had published research in the area. Experts were
asked to provide extensive written critiques both for the test
objectives and for the test questions. Based on these written critiques,
and through verbal discussions, both the objectives and questions were
modified to better represent and evaluate basic comprehension of the
LogoWriter language. To secure a reliability estimate, the instrument
was given to a summer class of Secondary Education 101 students at
the conclusicn of the LogoWriter unit. The KR-20 reliability estimate
was .82 for this sample of 18 students. Upon review of the item
analysis from this administration, and through further discussion with
some of the experts, additional slight modifications to the response

choices of three of the questions were made.

Summary of the research instruments

In summary, three instruments were used in the study to assess
far and near transfer effects from the instructional treatment. The
Cognitive Ability Test - Nonverbal Battery was used as an operational
measure of general analogical reasoning and assumed to evaluate far
transfer effects. It was a standardized instrument and has been
commonly used by researchers investigating analogical reasoning and
its training. The reuse of subprocedures programming test was an
instrument which had been modified from the work of Kurland,

84

Clement, Mawby, and Pea (198'}), to focus more directly on student
reuse of subprocedures, and was assumed to evaluate near transfer
effects of the treatment. This test was an on-line programming activity
which incorporated five distinct programming problems that
permitted a reuse of subprocedures between them. The LogoWriter
basic comprehension test was a locally created and locally standardized
multiple choice instrument used to provide an assessment of the basic
knowledge and comprehension of the LogoWriter language. It was
developed and included in the study to secure evidence that any
observed differences in the student reuse of subprocedures were not

merely due to differences in lower level comprehension of the

LogoWriter language.

Pilot of programming instruments and instructional materials

The programming measurement instruments, and treatment
instructional materials, were piloted to ensure their appropriateness
for use in the study. A regularly scheduled Secondary Education 101
class, during the summer of 1988, was used for this purpose.

The reuse of subprocedures programming test, used as an on-line
instrument, was given as part of the midterm exam in the course. The
mean number of subprocedures reused by the students for this pilot of
the instrument was 3.38, with a standard deviation of 2.93. This
suggested an average use of three to four subprocedures, with about

two thirds of the group varying between zero subprocedures reused

85

and six subprocedures reused, and roughly one third of the group using
more than six subprocedures. Such statistics suggeste_:d there would be
enough variance on the instrument to differientate effectively between
students. In addition, the hour time limit and on-line format of the
test seemed to be appropriate and to facilitate student efforts.

The LogoWriter basic comprehension test was also administered
during the LogoWriter unit as part of the students midterm exam.
Student scores on the 30 question multiple choice test ranged from 12
to 29 correct, with a mean of 21.94, and a standard deviation of 4.36
questions. The KR-20 reliability estimate for the test was .82 for the
18 students, with a standard error of measurement of 1.87. The
average student percent score on the test was 76%. The KR-20
reliability estimate and standard error of measurement indicated that
the test was fairly reliable for a 30 question multiple choice test, as
suggested by Borg and Gall (1983, pp. 281-288), and Stanley and
Hopkins (1972, pp. 118-126). Thus, the instrument was considered
to be reliable enough for eventual use in the actual study.

The analogical reasoning based Logo instructional materials were
also piloted during the regular LogoWriter unit of the course. During
the unit, instructional materials were critiqued and revised for both
content and sequence by the dissertation author and his major
professor. Careful researcher notes, student feedback, and daily video

taped classroom observations were used to suggest these revisions.

86

In summary, to ensure appropriateness for the eventual study, the
analogical reasoning based instructional materials and study
programming instruments were piloted on a summer session of the
same class in which the actual study would take place. Instructional
materials were carefully critiqued and revised for sequence and
content. Programming instruments, including both the online reuse of
subprocedures test and the LogoWriter basic comprehension test, were
also piloted by incorporating them as part of the midterm exams for
the summer class. The formal statistics gathered, in addition to
informal but careful observations, suggested that each of the

instruments would be appropriate for use in the actual study.

ministration of n men

Each of the three study instruments was used in a post-test only
format, and was incorporated as part of the regular course schedule in
which the student subjects were enrolled. The reuse of subprocedures
programming instrument was used as part of a lab midterm for the
students, and the LogoWriter basic comprehension test was used as
part of the lecture midterm. The Cognitive Ability Test - Nonverbal
Battery was not used for course evaluation, but it was required that
students take the test. Students were promised feedback on their
relative scores and class rankings.

The Cognitive Ability Test - Nonverbal Battery was used as an

outcome measure representing far transfer effects of the instructional

87

treatment. KR-20 Reliabilities were computed for each subtest of this
battery along with a reliability score for the battery, and are given along
with standard error of measurement statistics in Table 1. However,
only the battery composite score, with a KR-20 reliability of .87, was
used in statistical tests. This was because individual subtests have as
little as 15 questions, and the current technical manual for form four of
this test does not report individual reliabilities for battery subtests,
only each of the three batteries (Thorndike & Hagen, 1987b).

Table 1

Cognitive Ability Test Nonverbal Battery KR-20 Reliability Estimates

Computed for the Current Study

Number Reliability Standard Error

Subtest/Battery of Items Index of Measurement
Figure Classification 25 | .70 2.17
Figure Analogies 25 74 1.95
Figure Analysis 15 .79 1.67

Nonverbal Battery 65 .87 3.42

The reuse of subprocedures programming test was used as an
outcome measure representing near transfer effects of the

instructional treatment. Descriptive statistics for this test indicated

88

that the overall mean for reuse of subprecedures on the test was 2.97,
with an overall standard deviation of 3.09.

The LogoWriter basic comprehension test was administered to
determine relative comprehension of the LogoWriter language, and to
help provide insight into results from the reuse of subprocedures
programming instrument. It consisted of 30 multiple choice
questions. Students were given one hour in which to complete the
exam, although no student used the complete time allotted. The KR-
20 reliability computed for the test was .71, with a standard error of
measurement of 2.08 for the raw scores. The average test score was
75%.

Administration of each of the study instruments, as well as use of
student subjects in the study, was pre-approved by the Iowa State
University Human Subjects committee. Written api)roval for the study

was received on September 9, 1989.

Research Design and Procedures

This study investigated the potential of guided Logo programming
instruction for use in the development and transfer of analogical
reasoning. In this pursuit, two potential effects were considered:

1) the far transfer effects of instruction, as measured by a standardized

test associated with general analogical reasoning, and 2) the near

89

transfer effects of instruction, as measured by a constructed

programming test focused on the reuse of program subprocedures.

Research design
The study used a randomized post-test only control group design

in looking at both the far and near transfer effects. To investigate
these transfer effects, two dependent variables were used. Student
composite score on the Cognitive Ability Test - Nonverbal Battery was
assumed to represent the far transfer effects of the instructional
treatment, and the student reuse of subprocedure score, on a
constructed programming test, was assumed to represent the near
transfer effects. Pretests were not given due to the potential
interaction of the instruments.

Instructional treatment acted as the independent variable in the
study, with subjects randomly assigned to one of two treatment groups:
1) the experimental group, experiencing Logo programming
instruction systematically incorporating analogical reasoning training,
or 2) the control group, experiencing Logo brogramming instruction
taught in a more traditional approach, not explicitly incorporating
analogical reasoning based training. Instructional content was carefully
controlled, with an indication of relative comprehension provided by a
constructed LogoWriter basic comprehension test. Students were
randomly assigned, by individual student, to the respective treatment

group by use of a table of random numbers and a class roster.

90

Group Week 1 Week 4-6 Week 7
Experimental Q R X O; Og9 Og
Control Q R Y O; Og Og

Q - Initial questionnaire administered

R - Randomized by student

X - Instructional treatment of guided Logo programming,
systematically incorporating analogical reasoning

Y - Instructional treatment of traditional Logo programming

01 - Reuse of subprocedures programming test

Og - Cognitive Abilities Test - Nonverbal Battery
Og - LogoWriter basic comprehension test

FIGURE 1. Sequence of study events

The initial questionnaire to determine sample characteristics was
given during week one of the course with the instructional treatménts
beginning in the fourth week. The instructional treatments continued
through week six, with outcome measures administered in the week
directly following this period (see Figure 1). During the second and
third week of the course, preceding instructional treatments, students
received two weeks of instruction on AppleWorks wordprocessing as a
regular part of the course schedule. However, students were not
randomly divided into the separate treatment groups until the
beginning of the Logo programming unit used in the study.

91

Pr ures for itional r rch_control

Some additional research controls were needed due to the
necessity of operating within the parameters of a regularly scheduled
university class of large enrollment. The study was conducted as a
three week programming unit in the regular course activities of
Secondary Education 101. The course was an educational computing
class for preservice teachers that had a typical enrollment of about 170
students. This class was structured in two parts: 1) a twice a week one
hour lecture format, in which students sat in a large auditorium and
participated in large group lecture and demonstraticn, and 2) a once a
week two hour laboratory format, where students worked in groups of
approximately 18-20 in an educational computing lab, with each
student on a single computer.

The class has traditionally been structured so that students are
first introduced to instructional materials in the lecture setting and
then required to apply and practice this material within the laboratory
settings. During the semester of the study, two lecture sections were
held; one late morning lecture section that included students from five
laboratory sections, and one early afternoon lecture section, that
included students from four laboratory sections. Since treatment was
randomly assigned by student, it was necessary to split each lecture
section and each laboratory section into two distinct groups, which
then went through their respective instructional treatments
simultaneously. This necessity required the use of two separate

92

instructors and two separate rooms for each class meeting during the
study.

Instructor control To control for instructor influence in the
lecture sessions, instiuction was alternated in each group between the
two lecture instructors - the major professor, and the dissertation
author. To control for instructor influence in the laboratory sections,
instruction was alternated between the regular laboratory instructor
and an additional instructor who was either the dissertation author or a
senior laboratory instructor. From an instructor's perspective, all
instructors taught both instructional treatments, and each was
scheduled in either treatment 50% of his or her teaching time.

Pedagogical controls To help ensure that instructors utilized a
pure instructional treatment and did not mix instructional techniques,
careful content and pedagogical outlines were issued for each class
meeting (Appendicest, H, I, and J). These instructional outlines,
along with the student instructional sheets issued for each class
activity, provided a careful sequence and content of instruction for use
by the instructors in both treatment groups. These detailed
instructional outlines were used in all lecture and laboratory meetings
for the entire unit.

In addition to daily instructional outlines, individualized training
for each class session was also administered to help prevent mixing of
instructional treatments. For laboratory sessions, this training
involved first carefully going over and discussing the methodology for

93

the class session, and then having the laboratory instructor "micro-
teach" the instruction in front of the dissertation author to ensure
purity of methodology. Preparations for the lecture sessions were
more informal. This preparation consisted of the two lecture
instructors meeting prior to the instruction to discuss methodology
and content. This approach was deemed appropriate since both
lecture instructors had participated in the pilot of the instructional
materials. Finally, to help ensure that the trairiing and materials were
being correctly implemented by the laboratory instructors, the major
professor periodically monitored laboratory instruction in person, and

the dissertation author periodically monitored laboratory instruction by

use of video tape.
logical reasoning introdu ntrol In addition to

instructor-and pedagogical controls already discussed, a further
content contrdi was incorporated to ensure that any differences
between the experimental and control groups were not due to just the
initial brief introduction of analogical reasoning and the four Sternberg
component processes. In order to prevent treatment effects from
being too heavily influenced by this single aspect of the instructional
treatment, both groups were given the same 30 minute introduction to
analogical reasoning and to the component processes of analogical
reasoning before the programming unit began. This brief introduction
included a basic definition of analogical reasoning, three short
examples of analogical reasoning, a brief definition of the theoretical

94

components of the skill, and a single example of the components used
togetﬁer (see Appendix M for transparencies). Following this brief
introduction, students began their respective instructional treatments
with the experimental group cbntinuing to incorporate and emphasize
the analogical reasoning components in the planning of their
programs, and the control group using their own strategies for
program planning,

Room controls In addition to instructor and content controls,
it was also necessary to provide some control for potential room
differences. Since classes were split into two groups meeting
simultaneously, two separate rooms were necessary for each class. To
provide that the classroom did not enter into treatment effects,
schedules were adjusted so that each of the rooms was used equally
between experimental and control treatments. Thus, half of the
experimental sections, and half of the control sections, were
scheduled in each of the available classrooms. Individual experimental
and cont}'ol sections always met in the same location, however, and
careful attendance records were kept to prevent students from
showing up in the wrong room. In addition, instructional aids, such as

overheads, liquid crystal projection devices, etc. were kept consistent

throughout all classrooms.

95

Pr ures for adminis on of study instruments:

Each of the three outcome measures for the study was
administered in the week directly following the programming unit.
The Cognitive Abilities Test - Nonverbal Battery was administered as a
required, but ungraded course activity. Students were told that they
would be given feedback on the results of the test; and the importance
of a good effort on the test was emphasized. The reuse of
subprocedures programming test was used as part of the graded
hands-on laboratory midterm for the course. Similarly, the LogoWriter
basic comprehension test was used as part ¢f the graded lecture
midterm for the course. All instruments were administered by the
dissertation author, with both treatment groups taking the test
simultaneously in the same testing room to provide consistency and

similarity in testing environment.

Directional Hypotheses and Analysis of Data

Since the guided Logo instruction was designed to facilitate the
development and transfer of analogical reasoning, two directional
hypotheses were used in the stﬁdy. These hypotheses predicted an
improved performance for the experimental group on both of the study
instruments representing transfer: 1) the Cognitive Ability Test
Nonverbal Battery, representing far transfer of learning, and 2) the

96

reuse of subprocedures programming test, representing near transfer

of learning.

Directional hypotheses
Thus, in looking at the potential transfer effects of Logo

programming instruction systematically guided toward analogical
reasoning, the following two directional hypotheses were empirically
tested:

Hypothesis 1:
Students experiencing programming instruction, explicitly guided

toward analogical reasoning development, will have a significantly
higher mean composite score on the Cognitive Abilities Test -
Nonverbal Battery, than will a control group experiencing
programming instruction without explicit guidance.

Hypothesis 2:
Students experiencing programming instruction, explicitly guided

toward analogical reasoning development, will demonstrate a
significantly higher mean reuse of subprocedures, on a constructed
test of programming problems, than will a control group experiencing
programming instruction without explicit guidance.

97

Analysis of rocedur
Statistical procedures focused on testing of the two main

hypotheses for the study. These procedures compared mean scores
between treatment groups for the Cognitive Ability Test - Nonverbal
Battery, and for the reuse of subprocedures constructed programming
test. A third outcome measure, the LogoWriter basic comprehension
test, was also administered to provide an indication of relative
comprehension of the LogoWriter language, and to help interpret any
observed differences on the reuse of subprocedures programming
instrument. Additional auxiliary procedures were also included to
support the investigative nature of the study.

The Cognitive Ability Test The Cognitive Ability Test -
Nonverbal Battery was the outcome measure for the first hypothesis,
and assumed to represent far transfer effects of the instructional
treatment. This test produced four separate scores for the Nonverbal
Battery: 1) a Figure Classification subtest score, 2) a Figure Analogies
subtest score, 3) a Figure Analysis subtest score, and 4) a composite
score of the three subtests. The composite score was used to test the
first hypothesis and operated as the dependent variable. Basic
treatment differences on this variable were initially analyzed by use of
the t-test statistical technique.

The reuse of subprocedures programming test The reuse of
subprocedures constructed programming test was the outcome

measure for the second hypothesis, and assumed to represent near

98

transfer effects of the instructional treatment. This test produced a
single score that indicated the student reuse of subprocedures
between the five programming problems. Raw data were transformed
by use of a logarithmic transformation to achieve uniform variance.
Similar to the first hypothesis, basic treatment differences on this
variable were initially analyzed by use of the t-test statistical technique.
The LogoWriter basic comprehension test The LogoWriter basic
comprehension test was administered to verify that the programming
instructional content, taught with the two different treatment
methodologies, was relatively equally comprehended by both treatment
groups. This test was considered particularly important for providing
empirical evidence that differences observed in the reuse of
subprocedures were not merely the result of lower level differences or
inconsistencies in overall comprehension of the LogoWriter language.
The statistical technique used with this test was a standard t-test
looking at the significance of differenceé between treatment means.
Auxiliary analyses concerning possible interactions It was
considered that additional sources of variation might still be masking,
or interacting with, instructional treatment, even after initial
randomization procedures. Such a situation is not uncommon in
educational studies, and often suggests a factorial design (Borg and
Gall, 1983, pp. 685-691). Thus, auxiliary post-hoc analyses were
performed using various independent factors and covariates in factorial

designs attempting to hold particular sources of variation constant to

99

determine treatment effects. This was done to help support the ,
investigative nature of the study. Data for these additional independent
variables were secured from the questionnaire given at the beginning
of the study to look at sample characteristics. Two categorical
variables, gender and college year, were used as independent factors in
these tests. Two continuous variables, age and a self-reported
computer nervousness score, were used as covariates within the
factorial designs.

. Age was considered an appropriate covariate since it has been
consistently shown to be a possible source of variation in cognitive
processing, especially processing involving inductive strategies related
to analogical reasoning (Alderton, 1985; Bisanz, 1984; Sternberg,
1982; Goldman, 1982). Computer anxiety, represented in the study by
the self-reported computer nervousness score, was also considered to
be a possible source of variation, and was used as a covariate in post-
hoc analyses. This procedure was considered appropriate since many
studies have shown that computer anxiety can be a powerful emotional
state with effects on both behavior and learning (see Cambre, 1985, for
a review).

Gender, operating as a categorical variable, also was considered as
a possible source of variation and used as an in'dependent factor in the
factorial designs. Significant gender differences have often been
reported in the learning of mathematics and computer science

concepts, although this trend seems to be changing (Schildkamp-

100

Kundiger, 1982). College year was also used as a factor in the post-hoc
statistical designs. College year, although probably representing a
mixture of student characteristics, may give some indication of general
crystallized ability in a variety of content areas. Crystallized ability,
with its relationship to prior achievement, has been suggested as a
source of cognitive treatment interaction (Snow, 1980; Hart, 1986,
also see Tobias 1976).

Several available variables were not used as covariates or factors
for particular reasons relating to responses of the sample on the initial
questionnaire. Grade point average was not used as a factor, or
covariate, because college freshmen within the sample did not yet have
a college GPA and left this question blank on the questionnaire.
Computer experience and math experience were also not used as
covariates or facfors due to the extreme homogeneity of the sample on
these variables. Thus, only the four specific variables of gender, college
year, age, and self-reported computer nervousness, were used in
auxiliary analyses attempting to further control for the possible
interaction of additional independent variables.

Auxiliary analysis of the construc rogramming tes Since
the study was investigative in nature, auxiliary descriptive data relating
to student performance on the constructed programming test was also
gathered and compared between treatment groups. These data were
secured from the further analysis and scoring of student programs, and

were used to help suggest further research, and to help interpret

101

results from the reuse of subprocedures programming instrument. As
well as the targeted reuse of subprocedures score, used in testing of
the second hypothesis. scores were also computed for four other
aspects of student programming performance. These were: 1) the
number of programming problems completed successfully by the
student, 2) the number of commands used per successful problem by
the student, 3) whether the student used variables within the test, and
4) whether the student used recursion within the test.

Auxiliary correlations with the cognitive ability test To provide
additional insight into study results, each of the programming variables
was correlated with the composite score on the Cognitive Ability Test -
' Nonverbal Battery. This procedure was done to examine the strength
of the relationship between student reuse of subprocedufes and
general analogical reasoning, as measured by study instruments. The
theoretical relationship between reuse of subprocedures and analogical
reasoning acted as a premise for the second hypothesis of the study.
The non-parametric Spearman rank order correlation technique was

used to provide correlations and relative significance levels between

variables.
ummary of is of I ures In summary, statistical

procedures used in the study focused on the testing of the two main
hypotheses for the study. Hypothesis one predicted that the
experimental group would achieve a significantly higher mean score on

the Cognitive Ability Test - Nonverbal Battery. This hypothesis was

102

initially tested by use of a t-test on the composite score means.
Similarly, hypothesis two predicted a greater reuse of subprocedures
on the constructed programming test by the experimental group. This
hypothesis was also tested by use of an initial t-test. However, the
experimental group's raw scores had a significantly higher variance,
and a logarithmic transformation of the data was needed to stabilize
variances between groups.

In addition to statisticél tests for the two study hypotheses,
treatment groups were compared on relative comprehension of the
LogoWriter language. To compare treatment groups, means were
statistically analyzed for the LogoWriter basic comprehension test by
use of a statistical t-test.

To support the investigative nature of the study, auxiliary study
analyses were also performed and reported. These included several
analysis of variance tests to further investigate study hypotheses by
controlling for the influence of additional independent variables.
Auxiliary results also included descriptive statistics reported on the
reuse of subprocedures programming instrument, to provide insight
into results from the second hypothesis. Various correlations were
also performed between composite scores on the Cognitive Ability Test
- Nonverbal Battery and various scores from the reuse of subprocedures
programming instrument. The purpose was to verify the relative
strength of the relationship between general analogical reasoning and

reuse of subprocedures in the current study.

103

Summary

In this chapter the methodology of the study was described in five
sections: 1) subjects, 2) instructional treatments 3) research |
instruments, 4) research design and procedures, and 5) directional
hypotheses and analysis of data procedures. These sections discussed
a methodology supporting the overall purpose of the study - to
investigate the potential of guided Logo programming instruction for
use in the development and transfer of analogical reasoning. Each of
these sections will be briefly summarized.

In the beginning section of this chapter, a description of the
subjects was given. By an initial survey, it was found that the majority
of the subjects were female elementary education majors. However, a
small but significant number of the subjects were male agricultural
majors, with a variety of other majors of mixed gender also
represented. Also, the sample of subjects generally had few
programming and mathematics courses in their backgrounds, with a
significant number of the subjects expressing some nervousness
regarding their upcoming computer experiences.

In the second section, descriptions of the instructional
treatments were given. The experimental treatment consisted of Logo
programming instruction incorporating an overall structure to

emphasize and train general analogical reasoning. This treatment

104

relied heavily on the Logo research of Swan and Black (1987), and on
the component analogical reasoning research of Sternberg (1977a, b),
in the design of its pedagogical approach. The cbnﬂol group
treatment consisted of Logo programming instruction taught in a more
traditional way, emphasizing student freedom in the planning of
solutions to assigned problems. To help ensure that instructional
methodology was the only difference between the treatments,
programming content was kept the same between the two groups.

In the third section, the three research instruments were
described. The Cognitive Ability Test - Nonverbal Battery was used to
represent far transfer effects of general analogical reasoning. It was a
standardized instrument composed of three subtests. The reuse of
subprocedures programming test was used to represent near transfer
effects involving student reuse of subprocedures between programming
problems. It was an on-line programming instrument modified from
the research of Kurland, Clement, Mawby, and Pea (1987).
Additionally, a third instrumeht, the multiple choice LogoWriter basic
comprehension test, was created to help secure evidence that any
observed differences on the reuse of subprocedures programming test
were not merely due to lower level differences in general
comprehension of the LogoWriter language.

The third section also described the initial pilot of the
instructional materials and programming instruments. These

materials and instruments were piloted on a much smaller but similar

105

group of subjects to ensure their appropriateness for use in the actual
| study. A careful critique of these materials, as well as minor revisions,
were completed at that time. Finally, the descriptive statistics
associated with the administration of these instruments to the actual
study sample were reported and discussed.

In the fourth section, the general research procedures and
research design of the study were presented. The study used a
randomized post-test only control group design in looking at both near
and far transfer effects of the instructional treatment. Instructional
treatment acted as the independent variable. Composite score on the
Cognitive Ability Test - Nonverbal Battery, and reuse of subprocedures
score on a constructed programming test, acted as the dependent
variables for the study. Instructional content was carefully controlled,
with an indication of the relative comprehension of that content
provided by a constructed LogoWriter basic comprehension test.
Various other research controls were also incorporated to help remove
the potential effects of instructor and room influences. The
measurement instruments for the study, as well as both instructional
treatments, were incorporated into the student's general course
schedule, with the programming instruments operating as graded
activities in the course. |

In the last section, secticn five, the directional hypotheses and
statistical procedures were stated for the study. These hypotheses

predicted significantly higher mean scores on both dependent

106

measurés, representing far and near transfer effects, for the
experimental instruction emphasizing analogical reasoning. To test
these hypotheses, a t-test was completed on the sample means of the
treatment groups for each of the two dependent measures. Auxiliary
analyses were also done to investigate the possible interaction of other
independent variables with the instructional treatment. In addition, a
t-test was completed on the mean scores for the LogoWriter basic
comprehension test; the test provided insight into relative
comprehension of the LogoWriter language and assisted in the
interpretation of results from the second hypothesis. Finally, various
descriptive and correlational statistics were also reported, helping
both to support the investigative nature of the study and to verify study

assumptions. The results of each of these statistical tests are reported

in Chapter Four.

107
CHAPTER IV: RESULTS

The purpose of this study was to investigate the potential of
guided Logo programming instruction for use in the development and
transfer of analogical reasoning. To achieve this purpose, the study
focused on two possible transfer effects of the guided instruction:

1) the far transfer of learning, as measured by a standardized test
associated withl general analogical reasoning ability, and 2) the near
transfer of learning, as measured by a constructed programming test
that looked at the reuse of subprocedures between programming
problems,

As discussed in Chapter Three, the study used a post-test only,
control group design to look at both near and far transfer effects.
Instructional treatment acted as the independent variable in the study.
The experimental treatment consisted of programming instruction
carefully structured to emphasize general ahaloglcal reasoning in the
development of student solutions to programming problems. The
control treatment, in contrast, consisted of programming instruction
taught using a more traditional Logo approach, with students given
greater freedom to devélop and test their own solution strategies.

Dependent measures used to investigate differences in the
effectiveness ofi these two treatments were the Cognitive Ability Test -
Nonverbal Battery, and a constructed programming test looking at “‘the
reuse of subprocedures between programming problems. Additionally,

a basic LogoWriter comprehension test was constructed and

108

administered to indicate any treatment differences in relative
comprehension of the LogoWriter language, and to help interpret
results on the reuse of subprocedures programming instrument.

This chapter is divided into four sections. In the first section,
statistical results for the first study hypothesis are reported. These
results examined far transfer effects of the instructional treatment. In
the second section, statistical results are reported for the second
hypothesis, that examined near transfer effects. In the third section,
results are reported for the LogoWriter basic comprehension test, used
to examine relative comprehension of the instructional content, and to
provide insight into results from the second hypothesis. In the fourth
section auxiliary results for the study are reported. These results
include: 1) statistical procedures controlling for the interaction of
independent variables, 2) descriptive statistics examining the reuse of
subprocedures test, and 3) correlational data exploring the

relationship between reuse of subprocedures and analogical reasoning.
Hypothesis One Results
In examining the potential of guided Logo programming

instruction for use in the development and transfer of analogical

reasoning, the first hypothesis tested was:

109

Hypothesis 1
Students experiencing programming instruction, explicitly

guided toward analogical reasoning development, will have a
significantly higher mean composite score on the Cognitive Abilities
Test - Nonverbal Battery, than will a control group experiencing
programming instruction without explicit guidance.

This hypothesis used the Cognitive Ability Test - Nonverbal
Battery as an outcome measure representing the far transfer effects of
instruction. The battery composite score was used as the dependent
variable in all statistical tests of this hypothesis, and consisted of a sum
of the three battery subtests: 1) Figure Classification, 2) Figure
Analogies, and 3) Figure Analysis.

Initial hypothesis test

To test the difference between the means for the composite scores of
the experimental and control groups, a standard t-test was performed
with the results reported in Table 2. The t-test value of -0.28
indicated that there was no significant difference between treatment
means, p<.361. An associated F-statistic of 1.10 indicated that the
equal variances assumption of the t-test had been met. Thus, initial
results for the first hypothesis implied that both the guided Logo
instruction, acting as the experimental treatment, and the traditional
Logo instruction, acting as the control treatment, had similar effects

110

on the Cognitive Ability Test - Nonverbal Battery, as indicated by the

composite means for this battery.

Table 2: Hypothesis 1

Cognitive Ability Test - Nonverbal Battery Comparison of Mean

Composite Scores for Experimental and Control Treatment Groups

Group N Mean S.D. t-Value 1-Tailed
Probability
Experimental2 72 34.97 9.38
-0.28 361
ControlP 72 35.42 9.84

4] ogo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.

Hypothesis Two Results

In looking at the potential of guided Logo programming

instruction for use in the development and transfer of analogical

reasoning, the second hypothesis tested was:

Hypothesis 2
Students experiencing programming instruction, explicitly

guided toward analogical reasoning, will demonstrate a significantly

higher mean reuse of subprocedures, on a constructed test of

111

programming problems, than will a control group experiencing
programming instruction without explicit guidance.

This hypothesis test used a reuse of subprocedures score,
computed by the steps discussed in Chapter Three, as an outcome
measure representing the near transfer effects of instructional

treatment. Descriptive statistics for this test are given in Table 3.

Table 3: Hypothesis 2

Reuse of Subprocedures Programming Test Descriptive Statistics for
the Reuse of Subprocedures Raw Score for Both Treatment Groups

Standard
Treatment Group N Mean Deviation Variance
Experimental? 72 3.28 3.43 11.78
ControlP 72 2.69 2.69 7.26

1 0go systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.

These statistics indicated that the guided Logo group, acting as the
experimental instruction, had a larger variance in raw scores than did
the traditionally instructed Logo group, with variances of 11.78 and
7.26 respectively. A Hartley's test for homogeneity of variances found
an F statistic of 1.62, and confirmed that this difference in variances
was significant at p<.043. Since the mean of each group was

112

approximately equal to its corresponding standard deviation, a basic
logarithmic transformation of the data was performed, as suggested by
Ott (1984, p. 341-342), to stabilize variances. Statistical tests were

then completed on this transformed data.

Initial Hypothesis Test

To test the means of the transformed reuse of subprocedure

scores, a standard t-test was performed with the results reported in

Table 4.

Table 4: Hypothesis 2
Reuse of Subprocedures Programming Test Comparison of Means for
the Transformed Reuse of Subprocedures Scores for
Both Treatment Groups

Group N Mean? S.D. t-Value 1-Tailed
Probability
Experimentalb 72 .436 .358
-0.45 327
Control® 72 .465 .404

8Raw data transformed logarithmically to achieve uniform variance.
bLogo systematically guided toward analogical reasoning,.
CLogo taught in a traditional, exploratory approach.

The t-test value of -0.45 indicated that there was no significant

difference between the treatment means of the transformed scores at

p<.327. An associated F statistic of 1.27 suggested that the equal

113

variance assumption was now met. Thus, initial results for hypothesis
two showed no significant difference in the means for the transformed
reuse of subprocedure scores, implying that both instructional
treatments had similar effects on the mean score for student reuse of

subprocedures.

Results for the LogoWriter Basic Comprehension Test

The LogoWriter basic comprehension test was developed to
examine the relative comprehension of basic commands and concepts
in the LogoWriter programming language, operating as the
instructional content for the study. Such a test verifying relative
comprehension of the instructional content was important, since this
studjr sought to contrast the effects of two different instructional
methodologies when teaching the same instructional content. This
test also provided possible insight into the results of the second
hypothesis, since any observed differences in basic comprehension of
the LogoWriter language would directly impact results dealing with the
higher level programming construct of reuse of subprocedures.

To test the difference between the experimental and control group
means for scores on the LogoWriter basic comprehension test, a
standard t-test was performed with the results reported in Table 5.
The t-test value of -0.83 indicated that there was no significant
difference between treatment means, with p<.408. An associated F-

114

statistic of 1.29 indicated that the equal varlances assumption of the t-
test had been met. Thus, results for the LogoWriter basic
comprehension test indicated that both treatment groups had achieved
a statistically equal understanding of the basic commands and concepts

in the LogoWriter language, as suggested by mean scores on the test.’

Table 5: Instructional Content Comprehension

LogoWriter Basic Comprehension Test Comparison of Means Scores
for Both Experimental and Control Treatment Groups

Group N Mean SD. t-Value 2-Tailed
Probability
Experimental2 71 23.18 3.95
-0.83 .408

a1 ogo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.

Auxiliary Results

Since this study was investigative in nature, various auxiliary
analyses were incorporated to help provide further insight into study
results. Auxiliary analyses included several analysis of variance
statistical tests, associated with hypothesis one and two, that further
controlled for additional independent variables. Auxiliary procedures
also included various descriptive statistics looking more closely at the

1156

reuse of subprocedures programming test. Finally, several correlations
were also performed, to investigate the relationship between reuse of
subprocedures and analogical reasoning, as measured by study

instruments.

Auxiliary analyses for hypothesis one

It was considered that additional sources of variation, from other
independent variables associated with individual student
characteristics, might be interacting with instructional treatment to
mask transfer effects. Such a situation is common in educational
studies, and often suggests a factorial design (Borg and Gall, 1983, pp.
685 - 691). As discussed in Chapter Three, two categorical variables,
gender and college year, were used as additional independent factors
in further analysis of variance tests using a factorial design. Although
randomization should have equated groups with respect to age and
computer nervousness, these continuous variables were also entered as
covariates in the factorial designs to be sure this source of variation was
statistically removed.

Treatment with covariates For the first auxiliary analysis, the

variables of age and self-reported computer nervousness were added as
covariates in an analysis of variance statistical test of the treatment
composite means (Table 6, p. 132). Both age and self-reported

computer nervousness were found to be significant covariates, with

116

p<.002 and p<.001 respectively; however, the main effects of
instructional treatment were still not significant, with p<.702. Thus,
after controlling for age and initial computer nervousness, there stiil
was no significant difference between the means of the composite
scores, for the guided Logo and traditional Logo instructional groups,
on the Cognitive Ability Test - Nonverbal Battery.

Treatment by gender with covariates The second auxiliary
analysis included the independent factor of gender along with the
factor of instructional treatment, for a 2 by 2 factorial design still
incorporating the covariates of age and computer nervousness (Table 7,
p. 133). No significant differences were found for either gender,
p<.487, or gender/treatment interaction, p<.661, on the means of the
composite scores for the Cognitive Ability Test - Nonverbal Battery.
Age and computer nervousness were still significant as covariates with
p<.002, and p<.001 respectively.

Treatment by colle r with covaria The third and last
auxiliary analysis for hypothesis one used college year as an
independent factor using a 2 by 4 factorial design (Table 8, p. 134).
Computer nervousness was included as covariate and found to be
significant at p<.002. Age was not included as a covariate due to the
strong correlation between age and college year in this study.
Although no significant difference was found for college year alone,
p<.209, a significant difference was found for college year and

instructional treatment interaction, p<.034. Descriptive statistics

117

indicated a pattern for the interaction: freshmen achieved a higher
mean score with the guided Logo instruction; sophomores performed
relatively equally between instructional treatments; and juniors and
seniors achieved a higher mean score within the traditional Logo
instruction. Individual analysis of variance tests were then run for each
of the year subgroups, with age and computer nervousness still
operating as covariates (Tables 9 - 12, pp. 135 - 138). These tests
indicated that the mean for experimental freshmen was significantly
higher than the mean for control freshmen, i)<.047, and the mean for
experimental juniors was significantly lower than for control juniors,
p<.029. No individual significance was found for the sophomore and

- senior subgroups. Thus, guided Logo instruction produced a
statistically higher mean composite score for freshmen, and traditional
Logo instruction produced a statistically higher mean composite score
for juniors, implying that these two subgroups were responsible for
much of the interaction effect between treatment and college yearv
found in the full sample analysis of variance test.

Summary of auxiliary analysis for hypothesis one An initial t-test
of treatment means for the composite scores on the Cognitive Ability
Test - Nonverbal Battery had found no significant difference between
instructional groups. Various auxiliary analysis of variance tests were
then performed. These tests used a factorial design incorporating
college year and gender as independent factors, and age and self-

reported computer nervousness as covariates. Both age and self-

118

reported computer nervousness were found to be significant covariates.
The factor of gender, and its associated interaction with instructional
treatment, were not found to be significant sources of variation.
However, although a subject's year in college alone was not found to be
a significant source of variation, the interaction of instructional
treatment and year in college was found to be significant, with p<.034.
Descriptive statistics indicated a pattern for this interaction with
freshhen achieving a higher mean score in the experimental group,
sophomores achieving approximately equal scores in both groups, and
Jjuniors and seniors achieving higher mean scores in the control group.
Individual analysis of variance tests for each college year indicated that
the differences between freshmen subgroups, and the differences
between junior subgroups, were responsible for much of the

interaction effect between college year and treatment.

Auxiliary analyses for hypothesis two

As in hypothesis one, it was considered that additional sources of
variation might be interacting with instructional treatment to mask
treatment effects. Again, data from the initial sample questionnaire
was used to provide additional independent variables for auxiliary
analysis of variance tests. The categorical variables of gender and
college year were used as independent factors in the faqtorial designs,
with the continuous variables of age and self-reported computer

nervousness controlled as covariates.

119

Treatment with covariates For the first auxiliary analysis of

hypothesis two, age and self-reported computer nervousness were
added as covariates in an analysis of variance test of means for the
transformed reuse of subprocedures scores (Table 13, p. 139). In
contrast to the findings of hypothesis one, age and computer
nervousness were not found to be significant covariates for hypothesis
two, with p<.793, and p<.267 respectively. No significant difference
was found for the means of the transformed reuse of subprocedures

score, with p<.759, implying no difference in treatment effects on the

mean reuse of subprocedures.

Treatment by gender with covariates The second auxiliary

analysis for hypothesis two included the independent factor of gender
.alo'ng with instructional treatment to provide a 2 by 2 factorial design
(Table 14, p. 140). Age and computer nervousness were again entered
as covariates and found to be non-significant, with p<.792, and p<.263,
respectively. Although gender/treatment interaction was found to be
non-significant at p<.364, gender as a main effect approached but did
not achieve significance at p<.074. Descriptive statistics indicated that
females, with a mean for the transformed scores of .48, had performed
slightly better than males with a mean for the transformed scores of
.36. A slightly greater contrast was found within the males as a group.
Although females performed equally well in each instructional
treatment, with similar means of .48, males reused more

subprocedures in the experimental group, with a mean of .43

120

compared to .30. However, when a separate analysis of variance was
performed for the males subgroup, an F value of .73 indicated that the
mean for experimental males was not significantly larger than the
mean for control males, p<.199 (Table 15, p. 141). Thus, as with the
first auxiliary test for hypothesis two, differences in treatment effects
on the mean reuse of subprocedures, this time incorporating gender as
an additional factor, were not significant.

Treatmen oll r wi variat The third and last
auxiliary analysis for hypothesis two used college year as an
independent factor with instructional treatment for a 2 by 4 factorial
design (Table 16, p. 142). Computer nervousness was included as
covariate, but continued to be non-significant at p<.313. Age was not
entered as a covariate due to its high correlation with college year. No
significant difference was found either for college year alone, p<.995,
or for interaction between college year and treatment, at p<.986.
Thus, as with thé other statistical tests of hypothesis two, differences
in treatment effects on the mean reuse of subprocedures could not be

considered significant.

Summary of auxiliary analysis for hypothesis two

An initial t-test performed on means for the transformed reuse of
subprocedures score indicated no significant difference between
treatment means. Several analysis of variance statistical tests were

then performed to statistically control for additional independent

121

variables. Both age and computer nervousness were found to be non-
significant covariates within these statistical tests. Although an effect
for the gender factor approached significance in these auxiliary tests,
overall results still indicated that there was no significant difference in
the treatment means of the transformed scores. No significant |
interaction was also found for student year in college. Thus, further
auxiliary analyses, as well as the initial t-test, implied that there was no '
significant difference in the mean reuse of subprocedures between

treatment groups.

Further analysis of the programming test

Additional descriptive statistics related to performance on the
constructed reuse of subprocedures programming test were also
included in the study results. These statistics were used to clarify
results associated with hypothesis two, and to help suggest further
research. These descriptive statistics were gathered from the reuse of
subprocedures programming test, and described group performance
related to several programming aspects: 1) the number of
programming problems completed successfully, 2) the number of
commands used per successful problem, 3) the use of variables, and
4) the use of recursion.

These additional descriptive statistics from the reuse of
subprocedures programming instrument were included in the study

for two basic reasons: 1) to aid in discussion of the reuse of

122

subprocedure results by describing related aspects of student
programming performance on that instrument, 2) to help provide
suggestions for further research.

Success on particular problems The percent of both treatment
groups successfully programming a solution to each of the five
programming problems on the reuse of subprocedures programming
test is given in Table 17 (p. 143). For each of the problems, the
experirhental group had a slightly higher percentage of subjects
successfully program a solution. Problems were checked by execution
of the coded program, with student output considered correct only if it
perfectly matched desired output.

The gréatest difference between the groups occurred with
problem number four, with 13.1% more of the experimental group
" successfully programming a solution to this problem of similar
rectangles. The next highest difference between the groups rested
with problem number one, a problem using horizontally positioned
rectangles. Problem number three, with shaded rectangles positioned
diagonally upward to the right, had a difference between groups of
8.1%. Differences for the other two problems, both incorporating
squares, were less, But still in favor of the experimental group, with
problem number two and three having a difference of 3.0% and 6.3%
respectively. Thus, in summary, the experimental group had a greater
percentage of members successfully program a solution to each of the

five problems, with the greatest differences in group percent found on

123

the three problems that incorporated rectangles. The two problems

that used squares for the output had relatively less of a difference in

group percentages.

Number of commands used on particular problems The number

of commands used for éach successfully programmed problem was
computed, with group means for each problem given in Table 18 (p.
144). To count the number of commands used, a counting process
discussed by Kurland, Clement, Mawby, and Pea (1987), was used. In
this procedure, three specific counting rules are followed: 1) each
Logo primitive is one command, 2) each repeat statement is one
command, with repeated commands in the statement counted once,
and 3) each procedure call is one command, with commands in the
procedure counted only on the initial call.

Treatment groups were relatively close in the mean number of
commands that they used for each of the first three problems.
Though the experimental group had a slightly lower mean number of
commands in each of these problems, this difference was less than a
single command. In problems four and five, however, the difference
between the experimental and control groups was more substantial. In
problem four, the similar rectangle problem, students in the
experimental group used an average of 2.2 commands less than the
control group in creating their successful programs. This difference
was even larger in problem five, incorporating the shaded and

diagonally positioned rectangles, with students in the experimental

124

group using an average of 4.4 commands less than the control group in
building their programs. Thus, descriptive statistics suggested little
difference in the number of commands used by each group until the
later two problems, in which the experimental group used a mean
number of commands that was 2.2 and 4.4 commands less than the
mean number of commands for the control group.

Percent of group using variables and recursion The reuse of
subproéedures tests were further analyzed to determine the
percentage of each treatment group using variables and recursion
within at least one of the five problems. These percentages are given
in Table 19 (p. 145). The group percentages are slightly larger for the
experimental treatment in both the use of variables, and the use of
recursion. However, these differences are relatively small, with a
group difference of 4.2% with variables, and only 2.8% with recursion.
Thus, descriptive statistics indicated that the experimental group had
a slightly larger percentage of students choosing to use variables and
recursion in their programs than the control group.

Summary of programming descriptive statistics The further
analysis of the reuse of subprocedures instrument produced additional
descriptive statistics dealing with four particular aspects of group
performance on this test. The first set of statistics indicated the
percent of the sample in each treatment group who had produced
successful programs for each of the five test problems. These .statistics

indicated that the experimental group had a higher percentage of

125

students who had programmed successfully for each of the five
problems, with the largest difference found in the three problems
using rectangles. The second set of statistics dealt with the mean
number of commands used in successful programs for each group on a
specific problem. These statistics indicated that the mean number of
commands were virtually the same for each group on the first three
problems, but relatively different on the last two problems, with the
experimental group using two to four commands less. The third and
fourth sets of statistics indicated the percentage of each group
choosing to use variables and recursion in at least one problem on the
test. These statistics indicated a slightly greater group percentage for
the experimental treatment in both the use of variables, and the use of

recursion in test problems.

Correlations with the Cognitive Ability Test

Auxiliary results for the study also included various statistical
correlations concerned with verification of the statistical relationship
between reuse of subprocedures and analogical reasoning, that acted as
a research premise for the study. Reuse of subprocedures was targeted
" as an outcome variable because of the inherent use of analogical
reasoning in the purposeful reuse of subprocedures between different
programming problems, and because of correlational results
supporting this relationship in the work of Clement, Kurland, Mawby,
and Pea (1986). Since this inherent relationship acted as a research

126

premise for the second hypothesis of this study, some further analysis
was deemed appropriate to verify the strength of this relationship in
the current study. Thus, the reuse of subprocedures score from the
constructed programming test was correlated with the composite
score on the Cognitive Ability Test - Nonverbal Battery. The purpose
was to determine the strength of the relationship between these
variables in the current study, as measured by study instruments.
Correlations for three other programming variables were performed as
well, to provide a relative comparison to other available aspects of
programming performance.

The non-parametric Spearman rank order technique was used to
perform correlations between composite scores on the Cognitive
Ability Test - Nonverbal Battery, and the four programming variables -
associated with student performance on the complete programming
test. The four programming variables considered consisted of scores
representing: 1) the reuse of subprocedures between programming
problems, 2) the number of programming problems solved
successfully, 3) whether the student used variables within the test, and
4) whether the student used recursion within the test. Two other
programming variables were not correlated: mean number of
commands used per test problem, and percent of the group getting a
test problem correct. These two variables were not used as

correlational variables because they were associated with group

127

performance on each individual test problem, rather than with student
performance on the complete test.

Results showed that all four of the programming variables
considered were correlated to composite score on the Cognitive Ability
Test - Nonverbal Battery (Table 20, p. 146). Specifically, number of
correct programs correlated at .414, p<.001, with reuse of
subprocedures at .263, p<.001, use of recursion at .225, p<.003, and
finally, use of variables at .200, p<.008. Thus, in this study a significant
correlation was found between student reuse of subprocedures and
general analogical reasoning ability, as represented by study

instruments.

Summary of Study Results

In this chapter, results were presented from an investigation of
the potential of guided Logo programming instruction for use in
development and transfer of analogical reasoning. Four sections were
used to report these results: 1) the results for hypothesis one of the
study, 2) the results for hypothesis two of the study, 3) resuilts of the
LogoWriter basic comprehension test, looking at relative
comprehension of instructional content, and 4) auxiliary investigative
results. Auxiliary investigative results included further analysis of

variance statistical procedures, descriptive statistics from the reuse of

128

subprocedures test, and correlations investigating the relationship
between reuse of subprocedures and analogical reasoning.

In section one, results were reported for hypothesis one of the
study. This hypothesis predicted a higher mean score on the Cognitive
Ability Test - Nonverbal Battery for the guided Logo instruction, acting
as the experimental group, than for traditional Logo instruction, acting
as the control group. Initial testing of hypothesis one by use of a
standard t-test found no significant difference in group means.

In section two, results for the second hypothesis of the study
were reported. This hypothesis predicted a higher mean reuse of
subprocedures on fhe constructed programming test for the
experimental group than for the control group. Group variances were
found to be significantly different, with the experimental group having
a statistically greater variance than the control group. Raw data were
transformed by use of a logarithmic function to achieve uniform
variance. Initial testing of the means for the transformed scores, by
use of a standard t-test, found no significant difference in group means.

In section three, results were given for the LogoWriter basic
comprehension test. This test was used to examine general
comprehension of the various commands and concepts in the
LogoWriter language that acted as instructional content for the study.
A standard t-test indicated that the means for both groups on this
instrument were not statistically different. This result suggested that

129

both treatment groups had achieved a statistically equal understanding
of the LogoWriter language, as indicated by the test means. |

Finally, in section four, further auxiliary investigative results were
reported for the study. These results included analysis of variance
procedures, associated with hyppthesis one and two, that attempted to
control for additional independent variables. In further support of the
investigative nature of the study, this section also contained descriptive
statistics from the reuse of subprocedures test, and various
correlations looking at the relationship between analogical reasoning
and reuse of subprocedures.

The auxiliary analysis of hypothesis one, using the analysis of
variance statistical technique, found a significant interaction for college
year and instructional treatment. Descriptive statistics showed a
pattern for this interaction, with freshman performing better in the
experimental group, sophomores performing about the same in both
groups, and juniors and seniors performing better in the cbntrol group.
Individual analysis of variance tests, looking at each year separately,
indicated that only the subgroups of freshmen and juniors were
statistically significant.

Auxiliary analyses for hypothesis two, attempting to control for
additional independent variables, found no significant differences. An
effect for gender did approach signiﬁcanée, however, with females
having a slightly higher mean reuse of subprocedures than males. Also
within the male subgroup itself, the experimental treatment achieved a

130

slightly higher mean than the control treatment. However; this
difference was also not statistically significant.

Section four auxiliary results also included additional descriptive
statistics from the reuse of subprocedures programming instrument.
These statistics were used to provide insight into results from the
second hypothesis, and to help suggest further research. The
descriptive statistics suggested a slightly better group performance by
the experimental group on each of the investigated programming
aspects, with the greatest differences between groups occurring on the
most difficult problems.

Finally, section four also included correlations of programming
scores from the reuse of subprocedures programming instrument with
composite scores on the Cognitive Ability Test - Nonverbal Battery.
These correlations were included to help verify the relationship
between reuse of subprocedures and analogical reasoning, as
represented by study instruments. Significant correlations were found
between composite score on the Cognitive Ability Test - Nonverbal
Battery, and associated programming scores, including the targeted
reuse of subprocedures score.

This chapter presented results of a study seeking to investigate
the potential of guided Logo programming instruction for use in the
development and transfer of analogical reasoning. These results, and
the particular insights into this potential that they suggest, are
discussed in Chapter Five.

131

TABLES FOR AUXILIARY RESULTS

132

Table 6: Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery Comparison of Mean
Composite Score for Both Treatment Groups with Age and Computer

Nervousness Controlled as Covariates

A. Means and Counts
Treatment Experimental? ControlP
35.42 (72)° 34.97 (72)

B, _Analysis of Variance

Source of Sum of Mean Signif.d
Variation Squares DF Square F of F
Covariates 1699.83 2 849.91 10.43 0.001
Age 845.20 1 845.20 10.37 .002**
Comp. Nerv. 983.17 1 983.17 12.01 .00 1 ***
Main Effects
Treatment 12.00 1 12.00 0.15 .702
Explained 1711.82 3 570.61 7.00 .001
Residual : 11406.73 140 81.48
Total 13118.56 143 91.74

] ogo systematically guided toward analogical reasoning.
bbogo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

dThe*** two-tailed significance at the .001 level. The **
indicates two-tailed significance at the .01 level.

133

Table 7: Auxiliary Results Hypothesis 1
Cognitive Ability Test - Nonverbal Battery Comparison of Mean
Compaosite Score for Both Treatment Groups by Gender, with Age and
Computer Nervousness Controlled as Covariates

——

A. Means and Counts
Treatment Experimental® Control?
35.42 (72)° 34.97 (72)
Gender Female Male
34.88 (108) 36.14 (36)
Treatment Exp. Fem. Exp. Male Cont. Fem. Cont. Male

By Gender 35.39 (54) 35.50 (18) 34.37 (54) 36.78 (18)
B. Analysis of Variance

Source of Sum of Mean . Signif.d
Variation Squares DF Square F of F
Covariates 1699.83 2 849.91 10.33 .001
Age 845.20 1 845.20 10.28 .002**
Comp. Nerv. 983.17 1 983.17 11.95 00 1%+
Main Effects 51.96 2 . 25.98 0.32 .730
Treatment 11.89 1 11.89 0.14 .705
Gender 39.97 1 39.97 0.49 487
Interaction
Treat by Gender 15.92 1 15.92 0.19 .661
Explained 1767.71 5 353.54 4.30 .001
Residual 11350.85 138 82.25
Total 13118.56 143 91.74

] ogo systematically guided toward analogical reasoning.
bLogo instruction taught in a traditional, exploratory approach.
CThe numbers in parentheses demote sample size.

drhe ** denotes two-tailed significance at the .001 level. The **
denotes two-tailed significance at the .01 level.

134

Table 8: Auxiliary Results Hypothesis 1
Cognitive Ability Test - Nonverbal Battery Comparison of Mean

Composite Score for Both Treatment Groups by Year in College, with
Computer Nervousness Controlled as a Covariate

A. Means and Counts
Treatment Experimental? ControlP
' 35.42 (72)° 35.07 (71)
Year in Freshmen Sophomore Junior Senior

College 36.14 (44) 36.48 (31) 32.54 (37) 35.97 (31)

Treatment Exp. Fresh. Exp. Soph. Exp. Junior Exp. Senior
By Year 38.95 (22) 36.40 (20) 27.67 (12) 35.17 (18)

Cont. Fresh. Cont. Soph. Cont. Junior Cont. Senior
- 33.32 (22) 36.64 (11) 34.88 (25) 37.08 (13)

B, Analysis of Variance

Source of Sum of Mean Signif.d
Variation Squares DF Square F of F
Covariates 832.51 1 832.51 10.04 .002
Comp. Nerv. .832.51 1 832.51 10.04 .002**
Main Effects 381.77 4 95.44 1.51 .336
Treatment 24.30 1 24.30 .29 .589
Year in College 380.91 3 126.97 1.53 .209
Interaction
Treat by Year 738.84 3 246.28 2.97 .034*
Explained 1953.12 8 244.14 2.94 .005
Residual 11113.31 134 82.94 '
Total 13066.43 142 92.02

ALogo systematically guided toward analogical reasoning.
l:’Logo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

dThe * denotes two-tailed significance at the .05 level. The **
denotes two-tailed significance at the .01 level.

1356

Table 9: Auxiliary Results Hypothesis 1

Cognitive Ability Test - Nonverbal Battery Comparison of Mean

Composite Score for Freshmen in Both Treatment Groups with Age
and Computer Nervousness Controlled as Covariates

M unts
Treatment Experimental® ControlP
38.95 (22)€ 33.32 (22)

B, An is of V. n

Source of Sum of Mean Signif.d
Variation Squares DF Square F of F
Covariates 187.19 2 93.60 1.06 357
Age 142.91 1 142,91 1.61 211
Comp. Nerv. 16.22 1 16.22 0.18 671
Main Effects
Treatment 261.30 1 261.30 2.95 .047*
Explained 448.49 - 3 149.50 1.69 .185
Residual 3540.69 40 88.52
Total 3989.18 43 92.77

4 0go systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

dThe * indicates one-tailed significance at the .05 level.

136

Table 10: Auxiliary Results Hypothesis 1
Cognitive Ability Test - Nonverbal Battery Comparison of Mean

Composite Score for Sophomores in Both Treatment Groups with Age
and Computer Nervousness Controlled as Covariates

. Me d Coun
Treatment Experimental? Control?
36.40 (20)° . 36.64 (11)
B. Analysis of Variance

Source of Sum of Mean Signif.d
Variation Squares DF Square F of F
Covariates 1060.08 2 530.04 8.64 .001

Age 320.06 1 320.06 5.22 .030*

Comp. Nerv. 606.80 1 606.80 9.89 .004**
Main Effects

Treatment 49.26 1 49.26 0.80 378
Explained 1109.34 3 369.78 6.03 .003
Residual 1656.40 27 61.35
Total 2765.74 30 92.19

3Logo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

dThe * indicates two-tailed significance at the .05 level. The **
indicates two-tailed significance at the .01 level.

137

Table 11: Auxiliary Results Hypothesis 1

Qognitive Ability Test - Nonverbal Battery Comparison of Mean

Composite Score for Juniors in Both Treatment Groups with Age and
Computer Nervousness Controlled as Covariates

A. Means and Counts
Treatment Experimental® ControlP
27.67 (12)°¢ 34.88 (25)

B. Analysis of Varian

Source of Sum of Mean Slgnlf.d
Variation Squares DF Square F of F
Covariates 213.89 2 106.94 1.13 .336
Age 213.88 1 213.88 2.26 .143
Comp. Nerv. 1.31 1 1.31 0.01 907
Main Effects
Treatment 366.82 1 366.82 3.87 .029*
Explained 580.71 3 193.57 2.04 127
Residual 3128.48 33 94.80
Total 3709.19 36 103.03

3Logo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

dThe * indicates one-tailed significance at the .05 level.

138

' Table 12: Auxiliary Results Hypothesis 1
Cognitive Ability Test - Nonverbal Battery Comparison of Mean

Composite Score for Seniors in Both Treatment Groups with Age and
Computer Nervousness Controlled as Covariates

A. Means and Counts

Treatment Experimental? ControlP
35.17 (18)° 37.08 (13)
B. Analysis of Variance

Source of Sum of Mean Signif.d
Variation Squares DF Square F of F
Covariates 668.72 2 334.36 6.16 .006

Age 288.00 1 288.00 5.31 .029*

Comp. Nerv. 492.53 1 492.53 9.08 .006**
Main Effects

Treatment 99.50 1 99.50 1.83 .187
Explained 768.22 3 256.07 4.72 .009
Residual 1464.75 27 54.25
Total 2232.97 30 74.43

4 ogo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

dThe * indicates two-tailed significance at the .05 level. The **
indicates one-tailed significance at the .01 level.

139

~ Table 13: Auxiliary Results Hypothesis 2
Reuse of Subprocedures Programming Test Comparison of Means for

the Transformed Reuse of Subprocedures Scores for Both Treatment
Groups, with Age and Computer Nervousness Entered as Covariates

A, Means and Counts?

Treatment Experimental® Control®
46 (72)d 44 (72)

B. Analysis of Variance

Source of Sum of Mean Signif.
Variation Squares DF Square F of F
Covariates .187 2 .094 637 .530
Age 010 1 .010 .069 .793
Comp. Nerv. .182 1 .182 1.243 267
Main Effects
Treatment 014 1 014 .095 .759
Explained 201 3 .067 .456 713
Residual 20.555 140 .147
Total 20.756 143 .145

4Raw data transformed logarithmically to achieve uniform variance.
bLogo systematically guided toward analogical reasoning,

CLogo taught in a traditional, exploratory approach.

dThe numbers in parentheses denote sample size.

140

Table 14: Auxiliary Results Hypothesis 2
Reuse of Subprocedures Programming Test Comparison of Means for
the Transformed Reuse of Subprocedures Scores for Both Treatment
Groups by Gender, with Age and Computer Nervousness Entered as

Covariates
n un
Treatment Experimental® ControlP
0.46 (72)€ 0.44 (72)
Gender ' Female Male
0.48 (108) 0.36 (36)
Treatment Exp. Fem. Exp. Male Cont. Fem. Cont. Male
By Gender 0.48 (54) 0.43 (18) 0.48 (54) 0.30 (18)
B, Analysis of Variance

Source of Sum of Mean Signif.
Variation Squares DF Square F of F
Covariates .187 2 .094 .647 .525

Age .010 1 010 .070 792

Comp. Nerv. .182 1 .182 1.261 .263
Main Effects .482 2 241 1.665 .193

Treatment .013 1 013 .093 .761

Gender .468 1 .468 3.233 074
Interaction

Treat by Gender .120 1 .120 .830 .364
Explained .789 5 .158 1.090 .368
Residual 19.967 . 138 .145
Total 20.756 143 .145

40go systematically guided toward analogical reasoning.
b.Logo taught in a traditional, exploratory approach.
CThe numbers in parentheses denote sample size.

141

Table 15: Auxiliary Results Hypothesis 2
Reuse of Subprocedures Programming Test Comparison of Means for

the Transformed Reuse of Subprocedures Scores for Males in Both
Treatment Groups, with Age and Computer Nervousness
Entered as Covariates

A, Means and Counts®

Treatment Experimental® Control®
43 (184 .30 (18)

B. Analysis of Varianc

Source of Sum of Mean Signif.
Variation Squares DF Square F of F
Covariates .135 2 .068 409 .668
Age .045 1 .045 273 .605
Comp. Nerv. .088 1 .088 .534 .470
Main Effects
Treatment 121 1 121 732 .199
Explained 256 - 3 .085 517 674
Residual 5.286 32 .165 |
Total 5.542 35 .158

4Raw data transformed logarithmically to achieve uniform variance.
bLogo systematically guided toward analogical reasoning,.

CLogo taught in a traditional, exploratory approach.

dThe numbers in parentheses denote sample size.

142

Table 16: Auxiliary Results Hypothesis 2
Reuse_of Subprocedures Programming Test Comparison of Means for
the Transformed Reuse of Subprocedures Scores for Both Treatment
Groups by College Year, with Computer Nervousness Entered

as a Covariate
A. Means and Counts?
Treatment Experimental® Control®
46 (724 44 (71)
Year in Freshmen Sophomore Junior Senior
College 45 (44) 44 (31) .45 (37) .48 (31)
Treatment Exp. Fresh. Exp. Soph. Exp. Junior Exp. Senior
By Year 46 (22) 45 (20) 45 (12) .50. (18)
Cont. Fresh. Cont. Soph. Cont. Junior Cont. Senior
44 (22) 43 (11) 45 (25) 45 (13)
B. Analysis of Variance
Source of Sum of : Mean Signif.
Variation Squares DF . Square F of F
Covariates 156 1 156 1.024 .313
Comp. Nerv. .156 1 .156 1.024 313
Main Effects .020 4 .005 .033 998
Treatment .009 1 .009 .062 .803
Year in College .011 3 .004 .024 995
Interaction
Treat by Year .022 3 .007 .048 .986
Explained .198 8 .025 .163 995
Residual 20.354 134 .152
Total 20.552 142 .145

4Raw data transformed logarithmically to achieve uniform variance.
bLogo instruction systematically guided toward analogical reasoning.
CLogo instruction taught in a traditional, exploratory approach.
dThe numbers in parentheses denote sample size.

143

Table 17: Auxiliary Results

Programming Instrument Descriptive Statistics Percent of Treatment
Group Getting Specific Problems Correct on the Reuse of
Subprocedures Programming Instrument

Test Problems: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Prob.5

Experimental® 84.7% 76.4% 48.6% 61.1% 22.2%
ControlP 74.7% 73.4% 42.3% 47.9% 14.1%

41 ogo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.

144

Table 18: Auxiliary Results

Programming Instrument Descriptive Statistics Mean Number of
Commands Used Per Successful Program on the Reuse of

Subprocedures Programming Instrument

Test Problems: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Prob.5

Experimental® 17.7 19.8 27.8 12.3 39.0
Control? 18.0 20.0 28.1 14.5 43.4

3Logo systematically guided toward analogical reasoning.
bLogo taught in a traditional, exploratory approach.

145

Table 19: Auxiliary Results

Programming Instrument Descriptive Statistics Percent of Treatment
Group Using Variables and Recursion Within the Reuse of

Subprocedures Programming Instrument

Variables Recursion

Experimental® 87.5% 52.8%

aLogo sytematically guid towar analogical reasoning,
bLogo taught in a traditional, exploratory approach.

146

Table 20: Auxiliary Results
Correlations Between Outcome Variables Correlations of the Cognitive
Ability Test - Nonverbal Battery With Selected Programming Variables
on the Reuse of Subprocedures Programming Instrument

ns Wi nitive Ability Test - Nonverbal Battery

Reuse of Number of Use of Use of
Subproc. Prob. Correct Variables Recursion

Total Sample .263 414 .200 225
(N=144) (p<.001)*** (p<.001)*** (p<.008)** (p<.003)**

*** Signifies significance at the .001 level.
** Signifies significance at the .01 level.

147
CHAPTER V: DISCUSSION OF RESULTS

In this chapter the results of a study designed to investigate the
potential of guided Logo programming instruction for use in the
development and transfer of analogical reasoning are interpreted.
Discussion will be divided into six sections: 1) a brief summary of the
study, 2) an examination of results relating to hypothesized far
transfer effects, 3) an examination of results relating to hypothesized
near transfer effects, 4) an examination of results concerning basic
LogoWriter comprehension, 5) the implications suggested by auxiliary
descriptive statistics, and 6) a summary of conclusions, and

recommendations for further research.
Summary of the Study

The goals for the study were to investigate two potential effects of
incorporating systematic analogical reasoning training within guided
Logo programming instruction. The first goal was to investigate the far
transfer effects of such instruction on general analogical reasoning
development, as measured by a test assbciated with general analogical
reasoning. The second goal was to investigate the near transfer effects
of such instruction on a related and important computer programming

skill - the ability of the student to reuse subprocedures between

programming problems.

148

Two bodies of research were tapped in pursuing these goals:
1) research involving the training of analogical reasoning, and
2) research involving the development of cognitive skills from |
programming. The study was structured to contribute to both of these
areas by providing a methodology for empirically investigating
analogical reasoning training in guided Logo programming. Thus,
contribution to the search for potential methods to instruct general
analogical reasoning was targeted by focusing on guided Logo
programming as one possible method; and contribution to research on
the development of general cognitive skills from programming was
targeted by examining analogical reasoning as one particular skill.

To provide general analogical reasoning training within a guided
programming environment, this study incorporated Swan and Black's
three pedagogical components for the effective transfer of cognitive
skills from programming. These components involved a focus on the
specific skill, direct instruction of the skill, and a mediaﬂonal
approach to teacher/student interaction. Each of these transfer
components was emphasized in the guided programming instruction.
To incorporate the first component, the instruction focused on
analogical reasoning rather than on the programming activity itself. To
incorporate the second component, Sternberg's component processes
of analogical reasoning were used as a framework for direct instruction.

Finally, to incorporate the third component, detailed activity sheets

149

were utilized to facilitate teacher/student interaction in each class
meeting.

Using a post-test only control group design, students were
randomly placed in one of the two treatment groups. The experimental
group experienced guided Logo programming instruction, whereas the
control group experienced more traditional exploratory Logo
programming instruction. Both groups received the same instructional
content, with only the instructional treatment delivéring that content
varied between the guided and traditiorial Logo programming.
Measures of transfer were operationally defined to be student scores
on the Cognitive Ability Test - Nonverbal Battery, representing far
transfer of learning, and a student reuse of subprocedures score on a
constructed programming test, representing near transfer of learning.
A multiple choice basic comprehension test was also administered to
indicate relative comprehension of the LogoWriter language between
treatment groups.

Two directional hypotheses were generated for the study.
Hypothesis one predicted a higher group mean on the Cognitive Ability
Test - Nonverbal Battery for the experimental group than for the
control group. Similarly, hypothesis two predicted a higher mean |
reuse of subprocedures for the experimental group. These hypotheses,
along with group means for the comprehension test, were tested by
use of standard t-tests. To determine if additional independent
variables were interacting with the treatment, further auxiliary analyses

150

were also performed, using the analysis of variance statistical
procedure. Auxiliary data also included additional descriptive statistics
and correlations, to further enhance the investigative nature of the
study and to verify study assumptions.

Results for the study were reported in the previous chapter.
These results included data from statistical tests of each of the two
study hypotheses, and additional descriptive statistics and correlations.
These results, and t__heir particular implications concerning the
potential of guided Logo programming instruction for use in the
development and transfer of analogical reasoning, will now be

considered.

A Discussion of Far Transfer Results

It was hypothesized that the experiméntal group, involved in Logo
programming systematically guided toward analogical reasoning, would
have a higher mean score on the Cognitive Ability Test - Nonverbal
Battery than the control group, that was involved in more traditional
Logo instruction. This prediction relied on research suggesting the
potential success of analogical reasoning training in the classroom
(Holyoak, 1984; Sternberg, 1977a, b), and on research suggesting that
guided programming instruction could facilitate the development of
specific cognitive skills (Swan & Black, 1987; Delclos, V., Littlefield,
J., & Bransford, J., 1984). Also, such a prediction was encouraged by

1861

the inherent use of analogical reasoning when examining past
programs for insight into new ones (Kurland et al.,, 1987; Pennington,

1982).

The initial results
Using two treatment groups, one involved in Logo programming

systematically guided toward analogical reasoning, and one involved in
more traditional exploratory Logo programming instruction, the first
study hypothesis of far transfer was statistically tested and the results
reported in chapter four. As reported in that chapter, the initial t-test
between treatment groups implied that no differential far transfer of
learning had occurred, since mean composite scores on the Cognitive
Ability Test - Nonverbal Battery were not found to be statistically
different between the groups. Auxiliary anal}'rses were then combleted
to further control for possible interactions of additional independent

variables.

Searching for interactions
Four independent variables were systematically entered into

factorial designs to further control for their possible interactive effects
with instructional treatment: age, self-reported computer
nervousness, gender, and college year. The continuous scores of age
and self-reported computer nervousness were entered as covariates

and found to be statistically significant. However, treatment effects

152

were still non-significant after controlling for these sources of
variation. The effect of gender was also investigated, by using it as an
independent factor in an analysis of variance factorial design. As
reported, no main effect, or interactive effect, was found for the
independent variable of gender. Finally, student year in college was
entered as an independent factor in the factorial designs, while still
controlling for cbmputer nervousness. As reported, a statistically

significant interactive effect was found between instructional treatment

and a student's year in college, p<.05.

The interaction with vear in college

It is interesting to note the pattern in this study between a
student's year in college and instructional treatment. Descriptive
statistics indicated that freshmen had performed best in the guided
Logo programming instruction, and juniors and seniors had performed
best in the traditional exploratory Logo instruction, with sophomores
performing relatively equally between instructional treatments. This
disordinal interaction is expressed by Figure 2. When individual
analysis of variance tests were run for each specific college yeaf, only
the freshmen and junior groups were statistically significant within
their own group.

153

Cognitive g5l . -

Ablity Test =" ° ¢
NonVerbal

Battery 30+ Key

Mean Score ¢

08 Experimental
Control
-, Y ‘
20 ' * ' 3
Freshmen Sophomores Juniors Senliors

Student Year in College
FIGURE 2. Interaction of college year with instructional treatment

There is no doubt a mix of general characteristics that might
distinguish a college freshmen from a college junior. Whether college
juniors actually differ from college freshmen in specific characteristics
of ability, achievement, motivation, etc., is difficult, and pos‘sibly
impossible, to say. However, college juniors do have the advantage of at
least two years in formal college instruction, and hold the inherent
benefits of experiencing those two years. Freshmen, on the other
hand, are relatively academically inexperienced, and are only beginning
to experience learning at the college level. It is important to note that
most of the freshmen used in this study were probably within the first
few weeks of their college experiences, as this study began in the first
few weeks of the fall semester. Since no differences in treatment
effects were found for college sophomores, quite different results may

have been achieved had this study been implemented in the spring

154

semester, when most freshmen would have had a semester of college

before beginning the instructional treatments.

Relation ility interaction
The observed pattern of interaction between a student's year in

college and instructional treatment contains similarities to that found
in many studies examining the interaction of a student's general
reasoning ability with instructional treatment (see Snow, 1980,
Wittrocks, 1974). As suggested by Wittrack:

"Students with high general reasoning scores profit
more from a treatment in which the organization and
structuring essential to generative processing is left to
the individual. Students with low general reasoning
scores profit more from a fully elaborated treatment,
one that explicitly provides the organizational structure
that relates new information to previous experience"

(p. 190).

It is interesting to consider whether general reasoning ability
played a significant part in the differential performance for college
freshmen and juniors when exposed to the different instructional
treatments. If general reasoning ability did play a role, it seems likely

that such general ability would be of a special type that was "evolving"

155

through college learning experiences, providing an inherent
difference between the general reasoning ability of freshmen and
juniors. This seems especially likely when considering that students
were randomly assigned to the experimental treatments, statistically
equating treatment groups in the more stable aspects of student
general ability.

Some possible insight into this situation is found in studies
investigating differences in "crystallized ability" and "fluid ability"
(Snow, 1980, Hart, 1986). Crystallized ability is associated with
reasoning tasks drawing on verbal knowledge, reading comprehension,
and prior achievement. It tends to evolve and develop with age and
experience. Fluid ability, in contrast, relates to reasoning tasks which
draw llfﬂe on prior achievement, but encompass the ability to deal
with new and relatively different processing tasks. Fluid ability usually
encompasses the more stable aspects of general ability, and is
somewhat resistant to change.

Since improvement in crystallized ability is often associated with
experience (Hart, 1986, Baltes & Schaie, 1982, Snow 1980), it would
seem that college juniors may have increased their crystallized ability
through their initial two years of college, differentiating them from the
introductory freshmen. Fluid ability differences between the freshman
and juniors may have played lesser a part in the observed treatment
interaction, due to the higher stability of this construct and the
incorporation of randomization within the study design.

156

The natural evolved difference between college juniors and
freshmen in crystallized reasoning ability, therefore, may have been
partially responsible for the observed difference in reactions to the
experimental treatment. Thus, college juniors may have found the
analogical reasoning instruction to be in cénﬂict with the use of their
personal reasoning strategies, developed through general college
experience; creating a reduced performance on the Cognitive Ability
Test. In contrast, when juniors were allowed to practice their own
reasoning strategies developed through experience, as within the
control treatment, their performance on the Cognitive Ability Test was
facilitated. The reverse may have been true for college freshmen.
Since their crystallized reasoning ability was less established, the
formal analogical reasoning str?tegy offered by the experimental
treatment may have helped to facilitate performance on the generél
analogical reasoning instrument. Furthermore, since personal
reasoning sirategies of the freshmen were less developed, the freedom
to use these less efficient strategies, as offered by the control group, -
may have operated to hinder group performance on the instrument.

It is important to note that seniors also did slightly better in the
control treatment, although this difference was not statistiéally
significant, as it was with the junior subgroup. It would appear that
seniors were not as heavily influenced by the instructional treatment as
were the juniors, although the direction of influence was consistent

between the groups. It is difficult to say why seniors did not react at

157

least as significantly as juniors to the instructional treatment. It may
be that seniors, close to the end of their college experiences, put less
emphasis on the class in general, and thus minimized the effects of
differing instructional treatments. Or possibly, seniors who enroll in a
such a low level course, so late in their college experiences, may be
substantially different from the typical senior enrolled in higher level
courses. Often, it is not uncommon for such seniors to take a
freshmen level class as pass/fail, and that may have been the situation
for some of the seniors in the present study. In any case, it is apparent
from the observed interaction in this study that a year difference in

college level may be associated with substantial differences in

treatment effects.

A tentative conclusion of far transfer

Any conclusions should be considered tentative in investigative
research of this type, but it would seem apparent that some far
transfer of learning, within an interactional context, did take place in
this study. The guided Logo programming instruction did facilitate
analogical reasoning performance on the Cognitive Ability Test -
Nonverbal Battery for freshmen in the experimental sample. However,
such instruction hindered performance for juniors, slightly but did not
significantly hinder performance for college seniors, and had no effect

on college sophomores. Thus, the first hypothesis for the study was

158

supported for the college freshmen subgroup, but not supported for
college sophomores, juniors, or seniors.

The observed interaction in this study would seem similar to
studies reporting interactions for general ability. Although it is
difficult to say what specific cognitive aspects differentiate a college
junior from a college freshman, it would seem that differences in
crystallized reasoning ability offer at least one avenue for an

explanation of the interaction experienced in this study.

A Discussion of Near Transfer Results

This study also hypothesized that the experimental group,
involved in Logo programming systematically guided toward analogical
reasoning, would have a higher mean reuse of subprocedures cn a
constructed programming test than the control group, involved in
more traditional Logo instruction. This prediction relied on research
suggesﬁng analogical reasoning is inherent in the programming
process (Kurland et al.,, 1987; Mann, 1986; Pennington, 1982), and
that a student's reuse of subprocedures is related to their success on
an analogical reasoning task (Clement et al., 1986). This hypothesis
was also supported by evidence that guided programming instruction
is often more effective in developing specific programming and

cognitive skills (Leron, 1985, Swan & Black, 1987), than less directed

programming instruction.

159

The initial results
Using two treatment groups, one involved in Logo programming

systematically guided toward analogical reasoning, and one involved in
more traditional exploratory Logo programming instruction, the
second study hypothesis of near transfer was tested statistically and
the results reported in chapter four. As discussed in that chapter,
initial variance in the reuse of subprocedures scores differed
statistically between treatment groups, with the larger variance of
scores existing within the guided programming treatment. This
difference necessitated that raw scores be transformed logarithmically
to meet the equal variance assumptions of further statistical tests.

As reported in Chapter Four, the initial t-test of transformed
scores indicated that the group means for reuse of subprocedures were
not statistically different. This result implied that no differential
effects in near transfer of learning had occurred between treatment

groups. Auxiliary analyses were then completed to further control for

possible interactions.

Searching for interactions

Similar to the auxiliary procedures for hypothesis one, four
independent variables were systematically entered into factorial

designs to statistically control for their possible interactive effects with

instructional treatment: age, self-reported computer nervousness,

160

gender, and college year. The continuous scores of age and a self-
reported computer nervousness were entered as covariates and found
to be non-significant sources of variation. The effect of gender was also
investigated, by using it as an independent factor in an analysis of
variance factorial design. Although no interaction with gender was
found, a main effect for gender approached significance, with females
reusing slightly more subprocedures than males. Also, within the
males subgroup itself, males in the experimental group had reused
slightly more subprocedures than males in the control group; however,
this difference also did not achieve statistical significance. Finally,
student year in college was also entered as an independent factor in
the factorial designs, with no evidence of interaction or main effects.
Thus, auxiliary analyses for the second hypothesis, controlling for the
effects of four additional independent variables, also did not find any

statistical evidence of near transfer effects.

A possible explanation

The results of the study indicating that there had been essentially
no near transfer of learning for the guided programming group was at
first surprising. The use of the Sternberg component processes to
directly reference prior problems in the construction of new
prograins, would seem to generally encourage the direct reuse of
subprocedures from the past problem. By systematically focusing on a

specific earlier problem, direct use of subprocedures in that problem

161

would seem to be made more apparent and cognitively available to the
student programmer. The non-significant results for the near transfer
hypothesis also seemed inconsistent with significant interaction
results for the first hypothesis of the study, since no further
interaction was found for a student's year in college. However, upon
review of Salomon and Perkins discussion of the "high road" and "low
road" transfer mechanisms (1987), a tentative explanation becomes
apparent.

In discussion by Salomon and Perkins (pp. 151-153), "high road"
orientation for transfer seeks to achieve transfer of learning by use of
mindful abstraction of a skill, so as to view it in a more general sense
and as useful to other domains. This "high road" orientation is often
associated with the far transfer of learning into domains different from
those in which the si{ill is initlélly practiced. In contrast, "low road"
transfer orientation seeks to achieve transfer by extensive repetition
and automation of a skill, and is often associated with very near or
same domain transfer. Salomon and Perkins make the point that
extensive practice in programming would be unnecessary for far
transfer to other domains, as long as a vigorous high road transfer
orientation was present. In near domain transfer, however, more
extensive practice of a skill, using a low road transfer orientation, may

be necessary, encouraging the skill to become fairly automaticized

within the content domain.

162

It seems that such transfer mechanisms were possibly in
operation in this study. The short duration of the study may have made
near domain transfer difficult; as repetition of the specific process of
reusing subprocedures was not emphasized by the study, and
instructional time may not have been extensive enough for this skill to
become naturally automated. However, since far transfer of learning
was directly emphasized by use of a high road transfer orientation,
adequate time and practice may have been available for it to be
achieved. This rationale would help to explain why significant results,
associated with college year interaction, were found for the first
hypothesis, representing far transfer, but not for the second
hypothesis, representing near transfer.

| It is important to note that the experimental treatment
systematically emphasized far transfer of learning by incorporation of
the pedagogical transfer components discussed by Swan and Black
(1987). Thus, the active attention of students within the experimental
group was continually focused on the general problem solving nature of
analogical reasoning, and not on the programming pfocess itself. This
emphasis, although encouraging far transfer to geometric analogy
problems present on the Cognitive Ability Test - Nonverbal Battery,
possibly did little to encourage near transfer to reuse of subprocedures
between programming problems. It would seem that near transfer of
learning was not facilitated in this study by a high road instructional
treatment that systematically focused on far transfer of learning.

163

It is interesting to note, however, that the experimental
treatment group did have a significantly higher variance than the
control group. This finding would imply that the experimental
treatment may have had some differential effects for some students. A
post-hoc search fm; interaction did not identify any pattern for this
difference in the experimental scores. It may well be that additional
independent variables were operating interactively to spread out the

reuse of subprocedure scores for some students.

A tentative conclusion for near transfer

Conclusions for hypothesis two, as with conclusions associated
with hypothesis one, must be considered tentative due to the general
and investigative nature of the study. The guided Logo programming
instruction, although providing an increased variance in scores, did not
statistically improve analogical reasoning performance related to the
increased reuse of subprocedures between programming problems.
Thus, the second hypothesis for the study was not supported.

This result seems consistent with discussions of "high road" and
"low road" paths to transfer of learning as expressed by Salomon and
Perkins (1987). The repetition needed for adequate near transfer of
learning may not have been available due to the relatively short
duration of the study. The "high road" transfer emphasis of this study,
although achieving some far transfer, may have done very little to

164

encourage and differentiate near transfer of learning, as represented by

reuse of subprocedures within the programming domain.
A Discussion of Basic LogoWriter Comprehension

A LogoWriter basic comprehension test was developed and
administered in the study to determine relative comprehension of
basic commands and concepts in the LogoWriter language operating as
instructional content. This test was necessary to confidently interpret
any differences found in the measurement instruments representing
transfer of learning. Such a test was especially needed to provide
confidence in any results found for the reuse of subprocedures
instrument; a test that attempted to measure a higher level
programming concept that might be easily influenced by lower level
differences in basic comprehension of the LogoWriter language. Thus,
a multiple choice comprehension test was developed, locally

standardized, and administered in the study.

Discussion of results for the test

As reported in Chapter Four, the mean scores for the basic
LogoWriter comprehension test were not statistically different between
treatment groups. Since the content of the test was tied directly to
instructional objectives taught in both treatment groups, this result
iimplied that both treatment groups received a relatively equal

165

. understanding of basic commands and concepts in the LogoWriter
language, operating as the instructional content.

The statistically equal achievement of both treatment groups on
the LogoWriter basic comprehension test was seen as an encouraging
result. This study investigated the relative far and near transfer effects
of two different instructional techniques teaching the same
instructional content. If basic comprehension of that content had
differed significantly, then conclusions about transfer, especially near
transfer in the programming domain, would need to consider that
lower level comprehension differences might be responsible for higher
level transfer results. Such a situation would have also suggested the
possibility that attempts to teach the same instructional content to
both treatment groups had not been successful. Fortunately, however,
treatment means were not found td differ significantly for this test, and
it seems reasonable to conclude that the study had been relatively
successful in focusing on hypothesized transfer differences, rather than
on lower level comprehension differences, between the instructional
treatments.

It is also interesting to note that the relative comprehension of
the instructional content between groups was statistically equivalent
even though the guided Logo group generally spent less time on the
computer than the control group, using more traditional exploratory
Logo instruction. Although this was not a focus of the study, such a
result suggests the possibility that programming instruction guided

166

toward analogical reasoning may be able to use less on-line time than
more traditional exploratory Logo programming, and still achieve at
least an equivalent understanding of basic programming concepts.
However, research that more directly compares on-line times between
- groups, and includes tests of the retention of instructional content, as
well as its immediate comprehension, wéuld be needed before such a

conjecture could be confidently made.
Implications of Auxiliary Descriptive Statistics

To support the investigative nature of the study, additional
descriptive statistics were gathered and reported in the study. The
descriptive statistics summarized group programming performance on
the constructed programming test related to other aspects of
programming other than the reuse of subprocedures between

programming problems. Implications of these statistics will now be

discussed.

Discussion of programming descriptive statistics

The constructed programming test, used in the investigation of
hypothesized group differences for the reuse of subprocedures
between programming problems, was also scored to reflect group
performance in four other programming aspects. These were: 1) the

number of problems successfully programmed, 2) the number of

167

commands used per successful problem, 3) the use of variables, and 4)
the use of recursion. These statistics were reported to help provide
insight into results related to the reuse of subprocedures between
programming problems, and to help recommend further research.

As reported in Chapter Four. although the experimental group
had done slightly better in all four sets of additional descriptive
measures, most of these scores were relatively close between
treatment groups. Two notable differences did become apparent,
though. First, in the three problems using rectangles, the
experimental group had an average of 10% better success than the
control group. Secondly, in the last two test problems, experimental
students who had successfully programmed these problems, used an
average of two to four commands less in their programs than did
'students in the control group.

Possible implicati It is interesting to note that both
differences occurred in the three problems of greatest probable
difficulty for the students, the problems using rectangles. This
observation suggests that the difficulty level of the test problems may
have hindered effective discrimination between the programming
capabilities of the two groups. Although the programming test itself
seemed to be viewed as quite difficult by the students, the test
problems themselves may not have been difficult enough to demand
that the students draw on careful problem solving strategies. When

problems did begin to get more difficult, as with the three rectangle

168

problems, the difference between the experimental and control groups
seemed to become more apparent. .

The failure to find a difference between treatment groups in the
reuse of subprocedures, representing near transfer effects, may then
also be a function of inadequate test problem difficulty, as well as
inadequate instructional time or repetition, as discussed earlier. The
individual test problems may have lacked sufficient difficulty to
encourage the guided Logo group to attempt to apply their instructed
analogical reasoning straiegy. Some students may have purposefully
chosen an approach of creating completely new programs for each
particular problem, because it seemed easier than trying to reuse
previous subprocedures. Test problems may not have necessitated that
students carefully encode the various characteristics of the problem, |
which is so important in the general analogical reasoning process. The
loss of such a reasoning step would have greatly hindered a student's
tendency to reuse subprocedures between the test problems. It seems
apparent, then, from the additional descriptive statistics on the
constructed programming test, that programming problems of greater
difficulty than those used in this study may be necessary to effectively
elicit the instructed analogical reasoning strategy.

A more promising evaluative approach may be to use fewer, but
more difficult and carefully structured problems. Perhaps a pair of
problems, or sets of pairs, carefully designed to share structural

aspects, could focus more directly on the analogical reasoning

169

processes involved in a student drawing insight from one problem to
the other. Such pairings could emphasize specific aspects of the
problems that related to particular components of the analogical
reasoning process. Thus, one pair might emphasize aspects related to
encoding, another pair might emphasize aspects related to inferring,
etc. Such a systematic focus on each of the individual component
processes of analogical reasoning would greatly contribute to
knowledge about how these components operate within the

~ programming domain, and how they might be faéilitated and improved

in student programmers.

Summary of Conclusions and Research Recommendations

This study investigated the'potential of guided Logo programming
instruction for use in the development and transfer of analogical
reasoning. Investigation of this potential focused on two possible
treatment effects: 1) the far transfer of instruction, as measured by a
test associated with general analogical reasoning, and 2) the near
transfer of instruction, as measured by a constructed programming test

targeting the reuse of program subprocedures.

Conclusions:
Although of an exploratory nature, necessitating that conclusions

be considered tentative, results from this study indicate the following:

170

1. Guided Logo programming instruction significantly faéihtated
general analogical reasoning performance for college freshmen, as
measured by the Cognitive Ability Test - Nonverbal Battery, and as
compared to traditionally instructed Logo programming.

2. Guided Logo programming instruction significantly hindered
general analogical reasoning performance for college juniors, as
measured by the Cognitive Ability Test - Nonverbal Battery, and as
compared to traditionally instructed Logo programming.

3. Significant Interaction was found for the guided Logo programming

instruction and a student's year in college.

4. Guided Logo programming instruction did not significantly increase
students' reuse of subprocedures between programming problems, as
measured by a constructed programming test, ancll as compared to
traditionally instructed Logo programming. However, a higher
statistical variance in reuse of program subprocedures was observed for

the guided instructional group.

5. The constructed reuse of subprocedures programming test, as

modified from previous research, may not have contained problems of

171

sufficient difficulty to effectively and fully elicit the instructed
analogical reasoning strategy in student completion of the test.

Recommendations for further research

Based on this study, the following recommendations for further

research are suggested:

1. Study results seem to indicate that guided Logo programming, as
structured in this study, may be differentially effective across various
student characteristics for the development and far transfer of general
analogical reasoning. Further research focusing on specific
interactions with student characteristics, such as crystallized' and fluid

ability, would appear warranted.

2. Study results seem to indicate that reuse of subprocedures may not
be an adequate "stand alone" representation of the analogical reasoning
near transfer effects of guided Logo programming. A more
comprehensive approach, focusing on a variety of programming

aspects, may be more conducive to the investigation of near transfer

effects.

3. Study results seem to suggest that the reuse of subprocedures
programming test, as structured in this study, may not be appropriate

for looking at near transfer effects of the guided programming

172

instruction. A more promising evaluative approach may be to use pairs
of more difficult, and carefully structured programming problems, that
can effectively elicit analogical reasoning, and can be linked with

specific component processes of the skill.

4. Study results suggest the possibility that programming instruction
guided toward analogical reasoning may be able to utilize less on-line
time than more exploratory programming instruction in the learning of
basic programming concepts. Further research that more directly
compares group on-line times, comprehension of instructional

content, and actual retention of that content, would seem appropriate.

5. Further investigations of guided Logo programming, as structured in
this study, should include a variety of age groups and grade levels. It
appears that guided programming instruction, targeted at analogical
reasoning, may have substantially different effects for students of
varying ages and levels of formal education. Students younger than
those used in the present study would seem to be especially

appropriate for further research.
Concluding Remarks

In this study, the potential of guided Logo programming for use in

the development and transfer of analogical reasoning was investigated.

173

It was an exploratory study seeking to contribute to the ongoing éearch
for possible classroom methods to instruct general cognitive skills, by
focusing on analogical reasoning as one specific skill, and by using
guided Logo programming as one particular method.

Although further research needs to be completed, guided Logo
programming does seems to offer a powerful instructional tool for
teaching general analogical reasoning strategies to some students.
Computer programming languages themselves, especially Logo, appear
to offer a flexible and explicit problem solving medium by which
analogical reasoning strategies can be effectively discussed and
illustrated. |

It would appear that the "potential" of guided Logo programming
instruction for use in the development and transfer of analogical
reasoning is an exciting one, and worthy of continued research. Such
research may be all the more important as we enter an expanding age
of information, and attempt to meet the educational challenges of that
age. The active search for effective ways to instruct general analogical
reasoning would seem especially imperative for the well-being of
today's students who are citizens of the information age. Analogical
reasoning is a problem solving skill that can assist those students in
looking confidently ahead, by carefully looking back at what they

already know; an important skill in a time where there is indeed so

much to know.

174

BIBLIOGRAPHY

Adelson, B. (1981). Problem solving and the development of abstract
categories in programming languages. Memory & Cognition, 9(4),
422-433.

Alderton, D. (1985). Individual differences in process outcomes for
verbal analogy and classification solution. Intelligence, 9(1), 69-85.

Alexander, A. White, C. Haensly, P., & Crimmins-Jeanes, M. (1987).

Analogy training: A study of the effects of verbal reasoning. Journal
of Educational Research, 24(3), 77-80.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological
Review, 89, 369-406.

Anderson, J. R., Greeno, J. R., Kline, P. J., & Neves, D. M. (1981).
Acquisition of problem solving skill. In J. R. Anderson (Ed.),
Cognitive Skills and Their Acquisition. Hillsdale, NJ: Erlbaum.

Anderson, R. C. (1984). Role of the reader's schema in
comprehension, learning, and memory. In R. C. Anderson, J.

Osborn, & R.J. Tierney (Eds.), Learning to read in American
schools. Hillsdale, NJ: Erlbaum Publishers.

Arons, A. B. (1984). Computer based instructional dialogs in science
courses. Science, 224, 1051-1056.

Baltes, P. B., & Schaie, K. W. (1982). Aging and IQ--the myth of the
twilight years. In S. H. Zarit (Ed.), Readings in aging and death:
Contemporary perspectives. New York: Harper Row. '

Becker, H. J. (1987). The importance of a methodology that

maximizes falsifiability: Its applicability to research about Logo.
Educational Researcher, 16(5), 11-16.

Bisanz, J. (1984). Interpretation of instructions: A source of individual
differences in analogical reasoning. Intelligence, 8(2), 161-177.

Borg, W. R. (1983). Educational Research: An Introduction. New York,
New York: Longman Publishing.

175

Brooks, R. E. (1977). Toward a theory of the cognitive processes in
computer programming. International Journal of Man-Machine

Studies, 9, 737-751.

Brooks, L. & Dansereau, D. (1986). Effects of structural schema and
text organization on expository prose processing. Journal of

Educational Psychology, 75, 511-520.

Brown, J. S., & Burton, R. (1978). Diagnostic models for procedural
bugs in basic mathematical skills. Cognitive Science, 2, 155-192.

Cambre, M., & Cook, D. (1985). Computer anxiety: definition,

measurement, and correlates. Journal of Education Computing
Research, 1(1), 37-54.

Christ-Whitzel, J., & Hawley-Winne, B. (1976). Individual differences
and mathematics achievement: An investigation of aptitude-
treatment interaction in evaluation of three instructional
approaches. ERIC ED 129 868.

Clement, C., Kurland, D. Mawby, R., & Pea, R. (1986). Analogical
reasoning and computer programming. Journal of Educational

Computing Research, 2(4), 473-485.

Clements, D. H. (1987). Longitudinal study of the effects of Logo
programming on cognitive abilities and achievement. Journal of

Educational Computing Research, 3(1), 73-94.

Clements, D. H. (1986). Effects of Logo and CAI environments on

cognition and creativity. Journal of Educational Psychology, 78(4),
309-318.

Clements, D. H. (1985). Logo programming: Can it change how
children think? Electronic Learning, 28, 74-75.

Clements, D. H., Gullo, D. (1984). Effects of computer programming

on young children's cognition. Journal of Educational Psychology,
76, 1050-1059.

Clements, D. H., & Merriman, S. (1987). Componential developments
in Logo programming environments. Paper presented at the

American Educational Research Association, Washington D. C.

176

Cormier, S.; & Hagman, J. (1987). Transfer of Learning,

Contemporary Research and Applications. San Diego, California:

Academic Press.

Cory, S., & Walker, M. (1985). Logo works: Lessons in Logo.

Cambridge, Massachusetts: Terrapin Logo.

Cronbach, L., & Snow, R. (1977). Aptitudes and Instructional
Methods. New York, New York: Irvington Publishers.

Davidson, R. (1976). The role of metaphor and analogy in learning, In

J. Levin, and V. Allen (Eds.), itiv ing in Children;
Theories and Strategies. New York, New York: Academic Press.

De Corte, E., & Verschaffel, L. (in press). Effects of computer
experience on children's thinking skills. Joumnal of Structural

Learning.

De Leeuw, L. (1983). Teaching problem solving: An ATI study of the
effects of teaching algorithmic and heuristic solution methods.

Instructional Science, 12(1), 1-48.

Degelman, D., Free, J., Scarlato, M., Blackburn, J., & Golden, T.
(1986). Concept learning in preschool children: Effects of a short-

term Logo experience. Journal of Educational Computing Research,

2, 199-205.
Dewey, J. (1933). How We Think; A Restatement of the Relation of

Reflective Thinking to the Educative Process, Lexington,
Massachusetts: D.C. Heath.

Delclos, V., Littlefield, J., & Bransford, J. (1984). Teaching thinking
through Logo: The importance of method. Technical Report 1.2,
Vanderbilt University Learning Technology Center, Nashville, TN.

Eric ED 262 756.

Doyle, W. (1983). Academic work. Review of Educational Research,
53, 159-199.

Ekstrom, R. B., French, J. W., & Harmon, H. (1976). Manual for Kit of
Factor-Referenced Cognitive Tests. Princeton, NJ: Educational

Testing Service.

177

Evans, T. G. (1968). A program for the solution of geometric analogy
intelligence test questions. In M. Minsky (Ed.), Semantic
Information Processing, Cambridge, Massachusetts: MIT Press.

Federico, P. (1978). Accommodating instruction to student
characteristics: trends and issues. Navy Personnel Research and
Development Center Report, San Diego, CA. ERIC ED 165 792.

Feurzig, W., Horowitz, P., & Nickerson, R. (1981). Microcomputers in
Education., Cambridge Massachusetts: Bolt, Beranek, and Newman.

Fredericksen, N. (1984). Implications of cognitive theory for

instruction in problem solving. Review of Educational Research,
54(3), 363-407.

Gagne', R. M. (1986). Instructional Technology: The Research Field.

Journal of Instructional Development, 8(3), 7-14.

Garner, R., Wagoner, S., & Smith, T. (1983). Externalizing question-
answering strategies of good and poor comprehenders. Reading
Research Quarterly, 18, 439-447.

Gentner, D. (1982). Stucture mapping: A theoretical framework for

analogy. Cognitive Psychology, 7, 155-70.

Gentner, D., Stevens, A. L. (1983). Mental Models. Hillsdale, NJ:
Erlbaum Publishers.

Gick, M., & Holyoak, K. (1980). Analogical problem solving. Cognitive
Psychology, 12(3), 306-355.

Gick, M., & Holyoak, K. (1983). Schema induction and analogical
transfer. Cognitive Psychology, 15, 1-38.

Goldman, S. R., & Bisanz, J. (1980). Understanding the development

of analogical reasoning ability. Paper presented at AERA, Boston,

MA. ERIC ED 186 132.

{

Goldman, S. R., Pellegrino, J. W., Parseghian, P., & Sallis, R. (1982).
Developmental and individual differences in verbal analogical

reasoning. Child Development, 53(2), 550-559.

Greeno, J. G. (1978). Natures of problem solving abilities. In K. W.
Estes (Ed.), Handbook of Learning and Cognitive Processes.
Hillsdale, NJ: Erlbaum.

178

Gugerty, L., & Olson, G. (1986) Comprehension differences in

debugging by skilled and novice programmers. In E. Soloway and S.
Iyengar (Eds.), Empirical ies of Pr mmers. Norwood, New

Jersey: Ablex Publishing,
Guilford, J. P. (1967). The Nature of Human Intelligence. New York,

New York: McGraw Hill.

Halpern, D. (1987). Analogies as a critical thinking skill. In D.E.

Berger, K. Pezdek, W.P. Banks (Eds.) Applications of Cognitive
Psychology: Problem Solving, Education, and Computing, Hillsdale,

NJ: Erlbaum Publishers.

Hart, R. (1986). The effect of fluid ability, visual ability, and visual
placement within the screen on a simple concept task. Paper

presented at AECT convention, Las Vegas, NV. ERIC ED 267 774.

Hayes-Roth, B., & Hayes-Roth, F. (1979). A cognitive model of
planning. Cognitive Science, 3, 275-310.

Hesse, M. B. (1966). Models and Analogies in Science. Notre Dame:

University of Notre Dame Press.

Holton, B. (1982). Attribute treatment inferaction research in
mathematics education. School Science and Mathematics, 82(7),

593-602.

Holyoak, K. (1984). Analogical thinking and human intelligence. In R.
J. Sternberg (Ed.), Advances in the Psychology of Human
Intelligence. Hillsdale, NJ: Erlbaum Publishers.

Horton, J., & Ryba, K. (1986). Assessing learning with Logo: A pilot
study. The Computing Teacher, 14(1), 24-28.

Howe, J., O'Shea, T., & Plane, F. (1979). Teaching mathematics
through Logo programming: An evaluation study. In R. Lewis and E.

D. Tagg (Eds.), Computer Asssisted Learning: Scope, Progress, and

Limits. Amsterdam, Holland: North Holland Press.

Hunt, M. (1982). The Universe Within. New York, New York: Simon
and Schuster.

179

Khayrallah, M., & Van Den Meiraker, M. (1987). Logo programming
and the acquisition of cognitive skills. Journal of Computer-Based
Instruction, 14(4), 133-137.

Kurland, D., Clement, C., Mawby, R., & Pea, R. (1987). Mapping the
cognitive demands of learning to program. In R. Pea and K.
Sheingold (Eds.), Mirrors of Minds. Norword, New Jersey: Ablex
Publishing, 103-127.

Kurland, D., & Pea, R. (1983). Children's mental models of recursive

Logo programs. Journal of Educational Computing Research, 1,

235-243.

Lawson, A. (1982). Formal reasoning, achievement, and intelligence,
An issue of importance. Science Education, 66, 77-83.

Leron,(U). (1985). Logo today: Vision and reality. Computing Teacher,
12(5), 26-32.

Mann, R. J. (1986). The effects of Logo computer programming on
problem solving abilities of eighth grade students. Dissertation

Abstracts International, 8619040.

Markman, E. M. (1977). Realizing that you don't understand: A
preliminary investigation. Child Development, 48, 986-992.

Mathison, C., & Allen, B. (1987). The effect of stories and diagrams on
the solution on an analogous problem. Paper Presented at the

Annual Convention of the Association for Educational
Communications and Technology, Atlanta, GA. ERIC ED 285 549,

Mawby, R. (1984). Structured interviews on children's conceptions of
computers. Technical Report 19. Bank Street College of
Education, New York, New York.

Mayer, R. (1987). Learnable aspects of problem solving: Some
examples. In D. Berger, K. Pezdek, and W, Banks (Eds.),

Applications of Cognitive Psychology: Problem Solving, Education,

and Computing. Hillsdale, NJ: Lawrence Erlbaum.
Mayer, R. (1979). Can advance organizers influence meaningful

learning? Review of Educational Research, 49, 371-383.

180

Mayer, R., Bayman, P., & Dyck, J. (1987). Learning programming
languages: research and applications. In D. Berger, K. Pezdek, and

W. Banks (Eds.) Applications of Cognitive Psychology: Problem

Solving, Education, and Computing. Hillsdale, NJ: Lawrence
Erlbaum Publishers.

McConaghy, J., & Kirby, N. (1987). Analogical reasoning and ability
level: An examination of R.J. Sternberg's componential method.

Intelligence, 11(2), 137-159.
McGee, J. (1987). Curriculum for the information age: An interim

proposal. In M. A, White (Ed.), What Curriculum for the
Information Age? Hillsdale, NJ: Lawrence Erbaum Associates.

McKinnon, J., & Renner, J. (1971). Are colleges concerned with

intellectual development? American Journal of Physics, 39(9),
. 1047-1052.

McLeod, D., & Adams, V. (1980). Aptitude treatment interaction in
mathematics instruction using expository and discovery methods.

Journal for Research in Mathematics Education, 11, 225-234.

McLeod, D., & Adams, V. (1979). The wsle of cognitive style in the

learning of mathematics. Technical Report San Diego State
University, ERIC ED 196 .684. .

McLeod, D., & Briggs, J. (1980). Interactions of field independence
and general reasoning with inductive instruction in mathematics.

Journal for Research in Mathematics Education, 11, 94-103.

Moore, J., & Newell, A. (1973). How can MERLIN understand? In L.

W. Gregg (Ed.), Knowledge and Cognition, Hillsdale, NJ: Lawerence
Earlbaum Associates.

Mulholland, T. Pellegrino, J., & Glaser, R. (1980). Components of
geometric analogy solution. Cognitive Psychology, 12, 252-284,

Newby, T. J., & Stepich, D. A. (1987). Learning abstract concepts: the
use of analogies as a mediational strategy. Journal of Instructional
Development, 10(2), 20-26.

Newell, A., & Simon, H. (1972). Human Problem Solving. Englewood
Cliffs, NJ: Prentice Hall.

181

Nichols, J. A. (1981). Problem solving strategies and organization of
information in computer programming. Dissertation Abstracts

International, 41 (1981) 4721b.

Nummedal, S. G. (1987). Developing reasoning skills in college
students. In D.E. Berger, K. Pezdek, W.P. Banks (Eds.), Applications
f nitive Psychology: Problem Solving, Edu n
Computing. Hillsdale, NJ: Erlbaum Publishers.

Odom, M. (1982). The effects of learning computer programming
language on fifth and sixth grade student's skills of analysis,

synthesis, and evaluation. Dissertation Abstracts International, 44
(1982) 64A.

Onorato, L., & Schvaneveldt, R. (1986). Programmer/nonprogrammer
differences in specifying procedures to people and computers. In

E. Soloway, S. Iyengar (Eds.), Empirical Studies of Programmers.

Norwood, NJ: Ablex Publishers.

Ott, L. (1984). An Introduction to Statistical Méthods and Data
Analysis. Boston, MA: Duxbury Press.

Overall, T. (1981). Learning with logo at the Lamplighter School.
Microcomputing, 1, 42-47.)

Papert, S. (1972). Teaching children to be mathematicians versus

teaching about mathematics. International Journal for Mathematics
Education, Science, and Technology, 3, 249-262.

Papert, S., Watt, D., diSessa, A., & Weir, S. (1979). Final Report of the
Brookline Logo Project, (Logo Memo 53). MIT Artificial

Intelligence Laboratory, Cambridge, MA.

Papert, S. (1980). Mindstorms: Children, Computer Powerful
Ideas. New York, New York: Basic Books.

Pea, R. (1987). The aims of software criticism: Reply to Professor
Papert. Educational Researcher, 16(5), 4-8.

Pea, R. (1985). Transfer of thinking skills: Issues for software use and
design. Paper presented at the National Conference of Computers
and Complex Thinking, National Academy of Sciences, Washington,

DC.

182

Pea, R. (1983). Logo programming and problem solving. Technical
Report No. 12, Bank Street College of Education, New York, New

York.

Pea, R., & Kurland, D. (1987). On the cognitive effects of learning
computer programming. In R. Pea and K. Sheingold, (Eds.),

Mirrors of Minds. Norwood NJ: Ablex Publishing.

Pea, R., & Kurland, D. (1984a). On the cognitive effects of learning

computer programming: A critical look. Technical Report No. 9,
Bank Street College of Education, New York, New York.

Pea, R, & Kurland, D. (1984b). Logo programming and the

development of planning skills. Technical Report No. 16, Bank
Street College of Education, New York, New York.

Pea, R., Kurland, D., & Hawkins, J. (1987). Logo and the development
of thinking skills. In R. Pea and K. Sheingold, (Eds.}, Mirrors of
Minds. Norwood NJ: Ablex Publishing.

Pellegrino, J., & Glaser, R. (1982). Analyzing aptitudes for learning:
Inductive Reasoning. In R. Glaser (Ed.), Advances in Instructional
Psychology. Hillsdale NJ: Erlbaur.

Pellegrino, J., & Glaser, R. (1979). Cognitive correlates and
components in the analysis of individual differences, Intelligence,
3, 187-214.

Pennington, N. (1982). Cognitive components of expertise in
computer programming: A review of the literature. Technical

Report No. 46. University of Michigan Center for Cognitive
Science, Ann Arbor, Michigan.

Perkins, D. (1985). The fingertip effect: How information-processing
technology shapes thinking. Educational Researcher, 14(7), 11-17.

Perkins, D. N., Simmons, R., & Tishman, S. (1989). Teaching
cognitive and metacognitive strategies. Paper Presented at the

American Educational Research Association Conference of 1989,

San Francisco, California.

Polya, G. (1957). How to solve it. Second Edition. New York, New
York: Double day.

183

Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in

learning. In J. R. Anderson, (Ed.), Cognitive Skills and Their
Acquisition. Hillsdale, NJ: Erlbaum Associates.

Salomon, G., & Perkins, D. (1987). Transfer of cognitive skills from

programming When and how. Joumnal of Educationgl Computing

Research, 3(2), 149-169.

Schildkamp-Kundiger, E. (1982). An international review of gender
and mathematics. ERIC ED 222 326.

Snedecor G. W. & Cochran, W. G. (1980). Statistical Methods. Ames,
Iowa: Iowa State University Press.

Sneiderman, B. (1976). Exploratory experiments in programmer
behavior. Intermation rnal of Computer Information

Sciences, 5(2), 123-143.

Sneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions
in programmer behavior: A model and experimental results.

International rnal m r Information Sciences, 8(3),
219-238.

Snow, R. E. (1980). Aptitude processes, aptitude, learning and

instruction. In R. Snow & F. Montague, (Eds.), Cognitive Process
Analysis. Hillsdale, NJ: Lawrence Erlbaum Publishers.

Snow, R. E. (1977). Individual differences and instructional theory.
Educational Researcher, 6, 11-15.

Snow, R. E., & Lohman, D. F. (1984). Toward a theory of cognitive
aptitude for learning from instruction. Journal of Educational
Psychology, 76(3), 347-376.

Stanley, J. C. & Hopkins, K. D. (1972). Educational and Psychological
Measurement and Evaluation, Englewood Cliffs, NJ: Prentice Hall.

Sternberg, R. J. (1982). Reasoning, problem solving, and intelligence.

In R. Sternberg (Ed.), Handbook of Human Intelligence, Cambridge,

Massassusetts: Cambridge University Press.
Sternberg, R. J. (1980). An aptitude X strategy interaction in linear

syllogistic reasoning. Journal of Educational Psychology, 72(2),
226-239.

184

Sternberg, R. J. (1977a). Component processes in analogical
reasoning. Psychological Review, 84, 353-378.

Sternberg, R. J. (1977b). Intelligence, Information Processing and

Analogical R ning: Th mponential Analysis of Hum
Abilities. New York, New York: John Wiley and Sons.

Sternberg, R. J., & Downing, C. (1982). The development of higher

order reasoning in adolescence. Child Development, 53(1), 209-
221.

Sternberg, R. J., & Rifkin, B. (1979). The development of analogical
reasoning processes. Journal of Experimental Child Psychology, 27,

195-232.

Sternberg, R. J., Ketron, J., & Powell, J. (1982). Componential
approaches to the training of intelligent performance. In D. K.

Detterman & R. J. Sternberg (Eds.), How and How Much Can
Intelligence Be Increased? Norwood, NJ: Abex Publishing, 155-

172.

Stonier, T. (1983). The Wealth of Information. London, England:
Methuen Publishing. ,

Sugrue, B. (1989). Differential Effects of High and Low Cognitive Load
Instructional Methods on Recall and Transfer of Procedural
Knowledge. Unpublished Doctoral Dissertation, Iowa State

University, Ames, Iowa.

Swan, K., & Black, J. (1987). The cross-contextual transfer of problem
solving skills. CCT Report, 87(3), Columbia University, New York.

Thorndike, R. L., & Hagen, E. (1986). The Cognitive Ability Test.
Chicago, Illinois: Riverside Publishing.

Thorndike, R. L., & Hagen, E. (1987a). Preliminary Examiners Manual:
The Cognitive Ability Test. Chicago, Illinois: Riverside Publishing.

Thorndike, R. L., & Hagen, E. (1987b). Technical Manual: The
Cognitive Ability Test. Chicago, Illinois: Riverside Publishing.

Tobias, S. (1976). Achievement treatment interactions. Review of
Educational Research, 46(1), 61-74.

185

Walker, D. (1987). Logo needs research: A response to Papert's paper.
Educational Researcher, 16(5), 9-11.

Watt, D. (1982). Logo in the Schools. Byte, Z(8), 116-134.

White, C. S., & Alexander, P. A. (1984). Teaching analogical reasoning
processes. Reading World, 24(1), 38-42.

Wicks, R. (1986). Applying schema theory to mass media information

processing: Moving toward a formal model. ERIC ED 272 870.

Wittrock, M. C. (1974). A generative model of mathematics learning.

,Joun'ngl for Research in Mathematics Education, 5, 181-196.

186

ACKNOWLEDGEMENTS

Many people made this dissertation possible, and I would like to
thank just a few of them. First, I would like to thank Dr. Ann
Thompson, who advised me on this dissertation, and gave me continual
advice, support, and help. Without a doubt, this dissertation would not
have been a reality without her professional expertise and
commitment. I would also like to thank the rest of my program of
study committee, including Dr. Mike Simonson, Dr. Bill Rudolph, Dr.
Rex Thomas, and Dr. Tony Netusil. A special thanks also goes to Dr.
Simonson, who acted as the co-chair of my program of study
committee, and for the periodic stops in his office for advice. I would
also like to thank Dr. Volker, who helped make it possible for me to be
at Iowa State to begin with, and Dr. Doug DeShazer, for his sound
writing advice, and solutions to my periodic "Writers block".

There come to mind many others who deserve thanks, including
the graduate assistants who participated as instructors in my study,
including Nancy Carley, Susie Stoll, Dawn Wubben, Dave Carlsen, and
Miok Lee. Each of these people have my sincere gratitude for the
significant part they played in this endeavor.

I would like to especially thank those that initially helped "get
me here", and gave me the confidence to attempt, and stick with such
a seemingly difficult task. First, I would like to thank my father, for
the courage I have drawn from him over the years, and for always being

able to "get up after you're knocked down", an important skill in life as

187

well as graduate school. I would also like to thank my mother, for a
home that always offered a chance to talk and renew perspectives. I
would also like to thank my brothers and sister, for their continual
encouragement and friendship, and the periodic fishing and hunting,
that enabled me to forget this dissertation for a while. Finally, I would
like to thank my wife Annie, for allowing me to borrow some of "our
time" in working on this dissertation. It is a debt in which I will find
great pleasure in repaying.

188

APPENDIX A: SAMPLE BACKGROUND QUESTIONNAIRE

189

Secondary Education 101 - Beginning of Semester
Questionnaire

Please Note: This is a questionnaire given by your Secondary Education 101 instructors to help us
learn a little about what interests, concerns , and backgrounds the students.enrolled in this course
typically have. it will be used to help us plan and improve the general instruction for future
semesters, and also to help us analyze the appropriateness of the current instruction. This information
will be kept strictly confidential, and will have absolutely no bearing in determining your course
grade. Thanks for taking time to fill this out, and welcome to Secondary Education 101ill

Social Security No.
Sex: Age:
Year in College:

Name
Major:

1. Please list any high school or college computer science courses below:

1) 1)
2) 2)
3) 3)
4) 4)
5) 5)
2. Please Check the programming languages you have written programs in:
BASIC Pascal PL/M1_____ Logo Cobol
Others (specify please: .)

3. Please briefly list any computer work experience, you have had:

1)

2)

4. Please list all the college mathematics courses you have had:
1) 3) 4)
2) 4) 5)

5. Do you have access to a computer outside of the university? Yes or No

6. Please place a check beside your current college GPA:

4.0 to 3.5 2.49 to 2.0
3.49 to 3.0 1.99 o 1.5
2.99 to 2.5 Below 1.5

7. How would you describe the way you currently feel about computers?

Very Nervous
Somewhat Nervous
Not really nervous, but not really confident either
Somewhat Confident

Very Confident

8. Place a check by the computer software packages you have used before:

Appieworks Logo Lotus 123
Bank Street Writer LogoWriter —__MacWrite
Bank Street Filer SuperPilot MacPalint

9. Please place a check by the computers you have used before:
Apple 1BM Zenith Commodore Macintosh

Mainframes Other: (PleaseSpecify:)

190

- APPENDIX B: EXPERIMENTAL LARGE GROUP ACTIVITY SHEETS

191

h Analogical Reasoning Sheet Cod
(prcvlous%%«%lﬂ% oulput) (prevrousﬁfaé‘sg?gned code)

To Square
Repeat 4 [Fd 50 Rt 90]
End
h
{graphgggﬂprt’?!esb'ed) (mod(ﬂct%.%él% needed)

Directions:
1) Sketch the graphical output desired. (defining the problem)
2) Let's look at a previous problem to help us. (choosing a plany
3) Now employ our steps for analogical reasoning. (carrying out the plan)
Encode: Writing a fcw notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
Infer: Step carefully through the previous code, (top right hand comer) to
sce how it produces the previous graphic (left hand corner).
Map: Draw vertical lincs, or describe, the similaritics and differences
between the previous graphic output and the desired graphic output.
Apply: Now, using what you can from the previous problem, write a program to
produce the destred graphical output.
4) IHow did the program work? Describe bricfly below: (looling bacl)

? art to Modify:
PUIISMMT WhSeemeene Rl

>

No swent!

Agalnl

192

I Analogical Reasoning Sheet °
Graphic
'prevlousgraplcoulpuo (prevlously designed code)

To Stack To Move
Square Fd 50
Move Rt 90
Square Fd 25
End Lt 90
End

To Square :
Repeat 4 [Fd 50 Rt 90]
End

(graphf%ﬁ%}%eslred) (mod(ﬂe«%%%g needed)

Directions:
1) Sketch the graphical output desired. (defining the problem)
2) Let's look at a previous problem to help us. (choosing a plan)
3) Now employ our steps for analogical reasoning. (carrying out the plan)
Encode: Writing a few notes, analyze and brecakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
Infer; Step carefully through the previous code, (top right hand corner) to
see how It produces the previous graphic (left hand corner).
Map: Draw vertlcal lines, or describe, the simllaritics and differences
between the previous graphic output and the desired graphic output.
Apply: Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe briefly below: (looking back)
Jesired Output? § : Part to Modify:
. 3:: "f,‘: ?q':lt Quﬁ: What Seemo wrong? At woid

Again}

193

Grabhi Analogical Reasoning Sheet od
fpreutods’%ﬂ%ou{puu (prcvlous(ﬁ}?e‘s%aned code)

To House To Square
Square Repeat 4 [Fd 50 Rt 90]

Move End
Trlangle
End
To Move To Triangle
Fd 50 Repeat 3 [Fd 50 Rt 120]
Rt 30 End .
End

(lo run type: House)

GraPhlc Code
(graphic ouiput desired) (mod{fled code needed)

{any size desired)

Directions:
1) Sketch the graphical output desired. (defining the problem)
2) Let's look at a previous problem to help us. {choosing a plan)
3) Now employ our steps for analoglcal reasoning. (carrying out the plan)
Encode: Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
nfer; Step carefully through the previous code, (top right hand corner) to
see how it produces the previous graphic (left hand corner).
ap: Draw vertical lines, or describe, the similaritics and differences
between the previous graphic output and the desired graphic output.
ly: Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe bricfly below: (looking back)

Desired Output? What Seems Wrong? Part to Modify:
Ycs No Not Quite ~descibe I wo C5Cribe 1 wor

E g

:

194

Analogical Reasoning Sheet

Soaehle Cotest 1143
revlous graphic output) : (prevtously deslgned code) -

Some cor‘nmands used to

fill in the tmmediate mode:
e To Rectangle :x 1y gltl 45
(Niled with orange, any size) Repeat 2 [Fd :x Rt 90 Fd :y Rt 90} Fd 10
Immediate Mode End Pd
Setc 4
Fil
Graphic Code
{graphic oui%ut destred) (modifted code needed)

(any color, and any size)

Programming Mode ‘
(two variable input)

Directions:

1) Sketch the graphical output desired. (defining the problemy
2) Let's look at a previous problem to help us. (choosing a plan)
3) Now employ our steps for analogical reasoning. (carrying out the plan)

Encode: Writing a fcw notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
Infer; Step careflully through the previous code, (top right hand corner) to
see how it produces the previous graphilc (left hand corner).

Map: Draw vertical lines, or describe, the stmilarities and differcnces
between the previous graphic output and the desired graphic output.
Apply: Now, using what you can from the previous problem, write a program to

produce the desired graphical output.
4) How did the program work? Describe bricfly below: (looking bacl)

Desired Qutput? What Seems Wrong? Part to Modll}:;
Yes No Not Quite " describe T wort cscribe fn wor

195

Analogical Reasoning Sheet

Graphic
{prevlous graphic oulput} (previously designed code}

1 To Stack :X To Move X
If :X < O [Stop) Fd :X
Square :X End
Move :X
. To Square :x
Stack X - 10 Repeat 4 [Fd :x Rt 90)
End End

(using recursion)

QraPhlc Code
(graphic oulput destred) i (modifted code needed)

A

(a recursive program that draws
progressively smallcr houses)

Directions:
1) Sketch the graphical output desired. (defining the probleny
2) Let's look at a previous problem to help us. (cloosing a plan)
3) Now employ our steps for analogical reasoning. (carrying out the plan)
Encode; Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure In the previous code.
Infer: Step carefully through the previous code, (top right hand corner) to
see how it produces the previous graphie (left hand corner).
Map: Draw vertical lines, or describe, the similarities and differences
between the previous graphic output and the desired graphic output.
Apply: Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe briclly below: (looking back)
Desired Output? What Seems Wrong? Part to Modify:
Yes No Not Quite escribe i words cscribe il wor

No asweat!
Il Just Try
Again{

196

‘APPENDIX C: CONTROL LARGE GROUP ACTIVITY SHEETS

197

Class Activity Sheet

_— et
(graphic output desired) (code to draw graphic oulpul)

Directions:

1) Sketch or look at the graphical output desired. (defining the probleny

2) Think about what you wlll necd to do to have the turlle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plarJ’

3) Now try and bulld a program to have the turtle draw the desired geaphic
oulput. You may want to cither write out your code in pencll first, or start
programming dircctly on the computer. (carrying out the plan)

4) Tow did the program work? Dcscribe briefly below: (looking back)

Desired Qutput? What Seems Wrong? Part to Modify: o sw
Yes No Not Quile descrihe in words describe in words U—L‘{-‘-‘m—

Lel's lalk aboult Lhis as a class. What programs did we come up with?

198

Class Activity Sheet

. Graphle Code Sheet #LB3
{graphic ouiput destred) (code to draw graphic outpul, —

Directions:
1) Sketch or look at the graphical output desired. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plan)

3) Now try and bulld a program to have the turtle draw the desired graphic
output. You may want to either write out your code in penctl first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe briefly below: (looking back)

Desired Output? What Seems Wrong? Part to Modify: No sweat!
Yes No Not Quite describe in words describe in words Ll JustTry,

Let's talk about this as a class. What programs did we come up with?

199

Class Activity éheet

"' Graphic Code Sheet #LBA
(graphic oulput desired) (code to draw graphic output)’ —

(any size desired)

Directions: -

"1) Sketch or look at the graphical output desired. (defining the problenmy

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plan’)

3) Now try and build a program to have the turtle draw the desired graphic

output. You may want to elther write out your code in pencil first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe briefly below: (looking bacl)

Desired Output? What Seems Wrong? Part to Modify: No sweat|
Yes No Not Quite describe In words describe tn words ! stTry.

Let's talk about this as a class. What programs did we come up with?

200

Class Activity Sheet

- Graphig Code Sheet #LB5
(graphic output destred) {code to draw graphic output) —

(any color, and any stze)

Programming Mode
{two variable input)

Directions:

1) Sketch or look at the graphical output desired. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plary

3) Now try and build a program to have the turtle draw the destired graphic
output. You may want to elther write out your code in pencil first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe briefly below: (looking bacle)
Desired Output? What Seems Wrong? Part to Modify; l‘g%u!;c.nﬂ

Yes No Not Quile describe tn words describe in words U—J{-"‘!ﬁlﬁ-

Let's talk about this as a class. What programs did we come up with?

201

Class Activity Sheet

Graphic Code Sheet # LB6
(graphic output destred) (code to draw graphtc oufput) | —

A

(a recursive program that draws
progressively smaller houses)

Dirxections:

1) Sketch or look at the graphical output desired. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plan)

3) Now try and bulld a program to have the turtle draw the desired graphlc
output. You may want to elther write out your code in pencil first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe briefly below: (loolking back) *
Desired Output? What Seems Wrong? Part to Modify: No awent|

Yes No Not Quite describe in words describe In words Ll JustTry

Let's talk about this as a class. What programs did we come up with?

202

* APPENDIX D: EXPERIMENTAL LAB ACTIVITY SHEETS

203

Analogical Reasoning Sheet

G ~ap.hl§ 0
(prevlousl_t:zrapl output) mrevlous%'a%s%gned code)

To Triangle
Repeat 3 [Fd 50 Rt 120]
End
hi Cod
(grapmc:g_ap—]mﬁeslrew {modified :od: needed)

Directions:
1) Sketch the graphlcal output desired. (defining the problem)
2) Let's look at a previous problem to help us. (choosing a plany
3) Now employ our steps for analogical reasoning. (carrying out the plarny
Encode: Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphlc output, and each procedure in the previous code.
Infer: Step carefully through the previous code, (top right hand corner) to
see how it produces the previous graphic (left hand corner).
Map: Draw vertical lines, or describe, the similarities and differences
between the previous graphic output and the desired graphic output,

Apply: Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe bricfly below: (looking back)
Desired Output? What Seems Wrong? ;nrt to Modlf¥;
Yes No Not Quile escribe In words escribe fi wor

No swent!
Ll Just Try
Again|

204

Bt Analogical Reasoning Sheet _
'vreu(mg{;%gﬁmg oufpu?) {prevtously designed code)

[}

To Stack To Rectangle
Rectangle Repeat 2 [Fd 256 Rt 90 Fd 50 Rt 90)
Move End
Rectangle
End To Move
Fd 25
End
raphic e
lgraphl%?%ﬁﬂiﬂeslrcd) (mody'ledgcgo%g needed)

Directions:

1) Sketch the graphical output desired. (defining the problem)
2) Let's look at a previous problem to help us. (choosing a plan)
3) Now employ our steps for analogical reasoning. (carrying out the plan)
Encode: Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
Infer: Step carefully through the previous code, (top right hand corner) to
see how it produces the previous graphic (left hand corner).
Map: Draw vertical lines, or describe, the similarities and differences
between the previous graphic output and the desired graphic output.
Apply: Now, using what you can {rom the previous problem, write a program to
produce the desired graphical output.
4} How did the program work? Describe bricfly below: (looking back)

Desired Output? E!agt Sgem% Wﬁong"l art to Modi

Yes No NotQuite uscribe Ti wor

No sweat!
Ll Just Try
Agalnl

205

. -, Analogical Reasoning Sheet
'orevlot%%ﬁlg oulput) (prevlous y designed code) -
To Stack :X To Square :X
Square :X Repeat 4 [Fd :X Rt 90]
Fd X End
Square :X-10
Fd :X-10
Square :X-20
End
Graphti Code
(graph(?%?pﬁz?%eslred) {modifled :ode needed)

>
>

Directions:
1) Sketch the graphical output desired. (defining the problem)
2) Let's look at a previous problem to help us. (choosing a plan}
3} Now employ our steps for analogical reasoning. (carrying out the plan)
gncogg, Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure In the previous code.
Infer: Step carefully through the previous code, {top right hand corner) to
sce how it produces the previous graphic (left hand corner).
Map; Draw vertical lines, or describe, the similarities and differences
between the previous graphic output and the desired graphic output.

__p_p_!z_; Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe bricfly below: (looking back)

Desired Qutput? %ut geems Wiongg ;m:t to Modlév_t
Yes No Not Quite €scribe 0

>

No sweat!
Ll Just Try
Again|

206

Analogical Reasoning Sheet

'Drevlou%%lfil%output) (prevlous%od%glgned code) Sheet #S/\4

To Rectangle :W :L
Re;(:leat 2 [Fd :W Rt 90 Fd :L Rt 90|
En

(rectangle with any size of
length and width upon input)

grnphgﬁ Code
(graphic ouiput destred) (mod{fled code needed)

(a square of any stze tilted
at any angle)

Directions:
1) Sketch the graphical output destred. (defining the problem)
2) Let's look at a previous problem to help us. (clhoosing a plan)
3) Now employ our steps for analogical reasoning. (carrying out the plan)
Encode: Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
Infer; Step carefully through the previous code, (top right hand corner) to
see how it produces the previous graphic (left hand corner).
Map: Draw vertical lines, or describe, the similarities and differences
between the previous graphic output and the desired graphic output.

Apply: Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe briefly below: (looking back)
Desired Qutput? What Seems Wrong? éiart to Moglgg;
Yes No Not Quite escribe Ti words escribe It wor

No swent!
LllJust Try
Againl

207

Analogical Reasoning Sheet

grap_h%,g g%dsl
revlotis graphic oulput) (previously designed code)

[}

To Coll :X To Circle
If :X < O [Stop] Repeat 36 [I'd 2 Rt 10]
Clrcle End
Move
Co" :X'l To Move
End Pu
Fd 20
Pd
End
(graph(gt%i%‘(%les(red) (mod{fled code needed)

/OO

Directions:

1) Sketch the graphical output desired. (defining the problem)
2) Let's look at a previous problem to help us. (choosing a plan)
3) Now employ our steps for analogical reasoning. (carrying out the plan)

Encode; Writing a few notes, analyze and breakdown the previous graphic output,
the desired graphic output, and each procedure in the previous code.
Infer; Step carefully through the previous code, (top right hand corner) to
see how 1t produces the previous graphic (left hand corner).
Map: Draw vertical Hnes, or describe, the similarities and differences
between the previous graphic output and the desired graphic output.

Apply: Now, using what you can from the previous problem, write a program to
produce the desired graphical output.

4) How did the program work? Describe briefly below: (looking back)

Desired Qutput? What Segms Wfong'? &art to Modi
Yes No Not Quite €sc 0 scribe Tn wor

208

Group] Analogical Reasoning Homework #1 Project Planning Sheet
A

mrevlou'gs%%g[_fllfll%output) {preulous%%%glgned code) Pu

Rt 90
Calling Procedure Sub-Procedures + Fd 5
To Truck To Body Pd
Body Repeat 2{Fd 20 Rt 90 Fd 50 Rt 90] End
%;we: End To Move2
1ce Pu
To Wheel
. | Thove2 Repeat 10[Fd 3 Rt 36] Fd40
J O cel End Pd
%/lo;eS End
a To Cab
End Repeat 4{Fd 10 Rt 90] 0 Move3
e Fd 5
End
L:i 90
‘ P
g;aPhlﬁ Code
(graphic oufpul destred) {mod{fied code needed) End

Remember to plan your project by using the steps below!

1) Sketch the graphical oulput destred. (deflning the problem)
2) Lel's look at previous problems to help us, {choosing a plan)
My project will also use other sheels: Sheet # LAL Part: {he square

(as well as this sheet) Sheet # Part:
Sheet # ___ Part:
Sheet# ___ Part:

3) Now employ the steps for analogical reasoning. fcarmying out the plan)

Encode; Look carefully at the sketch of your project, and the graphtc and program for the truck,
{try (o breax these inlo smalle’r,' parrs) ’ °grap prog

Infer; Now step through the program for the truck and see how il draws the truck
Map;: Now look at how parls of your graphic are similar lo, and different from, parls of the truck.

Apply: Now try and pencil out a program for your project. You will probably need to
repeat the encode, Infer, and map steps occassionally, You will also want to
look carefully at parts of other problems you use, in the same way.

4) How did your program work? You may want to kecep a record as you try things. (looking back)

To Movel

209

LogoWriter Lab Assignment #1

“he first LogoWriter assignment is to create a program which draws a stmple graphic
picture, similar to the truck example distributed in class. The program should use at
least 7 seperate procedures, and be executed by typing the name of a single calling
procedure. It should be stored on your LogoWrliter disk within a page called Lastnamel,
{for instance Smith1l).

CRITERIA

At least 6 seperate procedures used in the program....... restessinens cevreresieiitarsestsnanns 4
Project rins WIthOUL @rTOrS. e iciiieerrsecninnsriiiersisesesnsriinsiesiniecesssimssrsmimionens G
Completed Homeworlke Prgject Planning Sheet turned Incccou... eveerrnniestrnniens 2
Project has a theme... ..o ceorennenene2
Project executes by the typing of a single procedure name.........cccceeieiennnens s 2
Project Is saved correctly, (see below),....cocveviriiiiiiiinnnnne eesseees erreeresneeans crerererans 1
Total...ccviiieiruieerinnnniienniinniesisiininsressesserinsssssssrasne crrressreresesarisnariens veerrsesaraens weld
Project saved under a page named: (Lastneme!)

‘o run the project type: { name of the calling procedura)

some reminders about savi n'a yT)'uF' p?oj?ct?

Ibus o save vour nrofect while vou are working:
1) Check the top of the screen to verify that the
page you are working on already has a name.
17 it doesn't, name ft with the NP command.

Remember, the LogoWriter “page”, where your
program is lo be stored must first be named
with the NP command before your program can
be saved. This namingof & page does notsave 3 press escape, this will bring you back to the
your work, but only sets up LogoWriter so that contents page, where the page name should
your work will be automaticelly seved when you now be listed.

press the escape key.

Toname a page for LogoWriter project # 1 type: 'y)" a{'the beginning of the lab period, first

NP "lastname! (and press return) boot up LogoWr tter, and run your project so
that It shows on the screen, Make sure that
the page is already named with Lastname |
(for instance: Smith1)

2) Remove your LogoWr iter disk from the drive.
3) Place the Lab Instructor's disk in the drive.
4) Press escape, your project Is now saved on the

fnstructors disk within a page identified with
your lasl name.

210

Group] Analogical Reasoning Homework #2 Project Planning Sheet
A

'Graphic
" {prevlouis graphic output) {previously designed code)
v J
Calling Procedure Sub-Procedures)
To Men To Oneman:X 10oLlegs:X To Body:X
Starlcomner Legs :X Rt 45 Fd :X
Oneman 40 Body :X Fd :X End
Moveover 40 Head :X Rt 90
Oncman 30 Arms :X Fd :X To Arms :X
Moveover 30 End Bk :X Lt 90
gnemnn 20 l':: 3(5) g(ti 1)8{0
d .
; ToHead:X png Fd:X*2
Repeat 36 IFd:x/20 Rt 10] pi 90
En
Qraghlc Code
{graphic oulpul destred) {mod{fted code needed)

Remember to plan your project by using the steps below!
1) Sketlch the graphical output desired. (deflning the problem)
2) Let's look at previous problems to help ukhoosing a plary
My pr&ect gl":lx gl 0 use other sheets: Sheet # LAL Part: thesquare

S W is sheet, Sheet # Part:
Sheet # ____ Part:
Sheet #____ Part:

3) Now employ the steps for anaioglcal reasoning. fcarrylng out the plan)

Encode: Look carefully at the sketch of your project, and the graphic and program for the seascene.
to break these tnlo smaller parts)
Infer; Now step through the program for the boats and see how it draws the seascene.

Map: Now look at how parts of your graphic are simtlar to, and different from, parts of the seascene.

Apply: Now Llry and pencil out a program for your project. You will probably need to
rcpeat the encode, infer, and map steps occassionally. You will also want to
look carefully at parts of other problems you use, in the same way.

4) How did your program work? You may want to keep a record as you try things. (looking back)

211

: LogoWriter Lab Assignment #2

The second LogoWriter assignment is to create a program using variables which draws a
simple graphic picture, similar to the stickmen example distributed in class. The
program should use at least 7 seperate procedures, and be executed by typing the name
of a single calling procedure. The project should also uge varlables somewhere in the
program. It should be stored on your LogoWriter disk within a page called Lastname2,
(for Instance Smith2).

CRITERIA
At least 6 seperate procedures used In the program.......eveeecseeesieniesesinneneee 2
Project runs without ErrorS....ccccviieiieieiineieininisnisniiniiimienmmemecsennessocesees 3
Project uses variables. ... iinniiianicnimssieassnseenssessassdd
Completed Homeworle Project Planning Sheet turned Incocvvvvvrvecniiereinennens2
Project Bas @ theme. i 2
Project executes by the typing of a single procedure name........cccceevisiiseriannee 1
Project is saved correctly, (see below),....ccccviiniininiiiiiniiinnnsiene 1

TOLAL . ccititieriirrecsiirnneerereentsonernansoreetrosersersesearssoseserssrnsssssrarrorssessnsenseoneassossassess 1

Project saved under a page named: (Lastnamel)
Toruntheprofecttype: _______ __ _ (name of the calling procedure)

G NN P BN M2 BN D W W S BN N W M W O WE e BT AR A R BN B B A e W B B e
Some reminders about saving your project:

Naming a LogoWriter page: Thus to save your project while you are worklng:
Remiember, the LogoWriler “page”, where your 1) Chicck the Lop of the screen Lo vertly that the

program is to be stored must first be named age vou are working on already has a name.

with the NP command before your program can H-,% dzesn'l. name “gw"h the Ng command.

be saved. This naming of a page does not save

your work, but only sels up LogoWriler so that 2) Press escape, this will bring you back to the

your work will be automatically saved when you conlents page, where the page name should

press the escape key. now be listed.

To name a page for LogoWrliter project #1 type: .
NP "lastnamel (and press retum) 1) At the beginning of the lab period, first

boot up LogoWriter, and run your project so
that it shows on the screen, Make sure that
the page is already named with Lastname!l
{for Instance: Smithl)

2} Remove your LogoWriter disk from the drive,
3) Place the Lab Instructor's disk in the drive.
4) Press cscape, your project is now saved on the

instruclors disk within a page identifled with
your last name.

212

Group| - Analogical Reasoning Homework #3 Project Planning Sheet
A

: aphi '
(prevtou%’c%ﬁ!g outpul) (previously deslgned code) ‘
Calling Procedure Sub-Procedures To Move iy
To SeaScene Yo Waves:x To Body 'y
Waves 10 U :x <0 [stopl Repent 2 {Fd :y/2 Rt 90 Fd :y Rt 90} gﬂ y
Moveleft Onewave End : Rt 90
Boat 40 Waves ix-1 Fd iy
Move 40 End To Mast :y Lt 90
Boat 30 To Onewave Fd y/2 Pd
Move 30 Repeat 180 (Fd .1 Rt 1] Rt 90 End
Boat 20 Lt 180 Fd iy/2
End End };&93 /2 To Movelefl
To Boat 1y Repeat 3 Fd 1y/2 Rt 120] F2
Body y End Fg "115
Graphi End Code Pd
- raphic n
(graphic ouipul destred) (modified code needed) End

Remember to plan your profect by using the steps below!

) Sketch the graphical output desired. (defining the problemy
!} Let's look at previous problems to help uf/toosing a plar)
My prmcct il alsio use other sheets: Sheet # LAl Part: the square
s well as this sheel Sheet # ____ Part:
Sheet ¥ ____ Parl:
Sheet #____ Parl:

|} Now employ the steps for analogical reasoning, (carrying oul the plary

Encode: Look carefully at the skelch of your profect, and the graphic and program for the seascene.
{try lo break these into smaller 'part
Infer; Now slep through the program for the boats and see how it draws Lhe seascene.

Map: Now look at how parts of your graphic are simtlar to, and d!fferent from, parts of the scascene.

1ply: Now try and pencil out a program for your project. You will probably need to
repeat Lhe encode, infer, and map steps occassionally, You will also want to
look carelully at parts of other problems you use, in the same way.

4) How did your program work? You may want to keep a record as you try things. (looking back)

213

LogoWriter Lab Assignment #3

‘he third LogoWriter assignment is to create a program using recursion which draws a
stmple graphic plcture, simifar to the SeaScene example distributed In class. The
program should use at least 7 seperate procedures, and be executed by typing the name
of a single calling procedure. The project should also use recursion somewhere in the
program. It should be stored on your LogoWriter disk within a page called Lastname3,
(for instance Smith3),

CRITERIA
At least 6 seperate procedures used In the program.........cuveeeininnereiscess 2
Project runs without errors....cicieeenuiereriescinireninnmsiiesicisimmiensessreee 2
Project UusSes recursloN. .. iieiiinisncinesessininiisisnsirnmmsinemsmsessesses 4
Completed Homework Profect Planning Sheet turned In ..o 2
Project has a theme....cciiiininiviininniieiiininiiiieiiiiiiieionmeenesee 2
Project executes by the typing of a single procedure name..........ccoeiseenns 1
Project Is saved correctly, (see below),.c.cuvumieiriiininniiiiisineniinesiiie 1

TOtaleciieririnnninnnininieeniiiennnrees e sarsesrresesssssneescssssssannesssssssssssressss 14

roject saved under a page named: (Lastnamel)}
To run the project type: {name of the calling procedure)

Some reminders about saving your project:

Naming a LogoWriler page: . | .
Remember, the LogoWriler "page”, where your 1) Check the top of l#e screen to verily that the

program is o be stored must first be named age you are working on already has a name
with the NP command belore your program can page you @ Y)
be save d‘k 'Iglls nalmlng of a page does not save If it doesn't, name it with the NP command.
your work, but only sets up LogoWriler so that 2) Press escape, this will bring you back to the
your work will be automatically saved when you) conlents pggc. where the p%ge name should
press the escape key. now-be listed.
To name a page for LogoWriler project #1 type: .
NP "lastnamel {and press return) 1) At the beginning of the lab period, first

boot up LogoWrlter, and run your project so
that it shows on the screen. Make sure that
the page is already named with Lastnamel
(for Instance: Smithl)

2} Remove your LogoWriler disk from the drive.
3) Place Lhe Lab Instructor's disk in the drive,
4) Press escape, your project is now saved on the

° instructlors disk within a page identifled with
your last name.

214

APPENDIX E: CONTROL LAB ACTIVITY SHEETS

215

Class Activity Sheet

Granie Coe
(graphic oulput destred) (code to draw graphic oufput

Directions:

1) Sketch or look at the graphical output desired. (defining the problem)

2} Think about whatlyou will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plans)

3) Now try and build a program to have the turtle draw the desired graphic
output. You may want to either write out your code In pencil lirst, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe briefly below: (looking baclk)
Desired Output? What Seems Wrong? Part to Modify: No sweat!
LU JustTry

Yes No Not Quile describe in words describe In words ‘

again|

+

Let's talk about this as a class. What programs did we come up with?

216

Class Activity Sheet

Graphic Code Sheet #SB2
{graplilc oulput destred) (code to draw graphic output) —

A

Directions:
1) Sketch or look at the graphical output desired. (defining the problem)
2) Think about what you will need to do to have the turtle draw the graphic

shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plar)

3) Now try and bulld a program to have the turtle draw the desired graphic
output. You may want to cither write out your code in pencil first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe brlefly below: {looking baclc)

Desired Output? What Seems Wrong? Part to Modify: No sweat!

Yes No Not Quile describe in words describe in words Ll JustTry

Let's talk about this as a class, What programs did we come up with?

217

Class Activity Sheet

Graphic : : Code (_Sheet #SB3)
{graphic oufput destred) (code to draw graphic output) —

A}

\Y

Directions:

1) Sketch or look at the graphical output desired. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plan;)

3} Now try and bulld a program to have the turtle draw the desired graphic
output. You may want to either write out your code in pencil first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe brielly below: (looling bacl)

Degired Qutput? What Seems Wrong? Part to Modify: No sweat!
Yes No Not Quite describe In words describe In words Ll JustTry,

Let's talk about this as a class. What programs did we come up with?

218

Class Actlvity Sheet

Graphic Code Sheet #SB4
(graphic oufput destred) (code lo draw graphic outpul)

A}

(a square of any size tilled
at any angle)

Directions:

1) Sketch or look at the graphical output desired. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plan)

3) Now try and build a program to have the turtle draw the desired graphic
output. You may want to either write out your code In pencil first, or start
programming directly on the computer. (carrying out the plan)

4) How did the program work? Describe bricfly below: (looking baclk)
Degired Qutput? What Seems Wrong? Part to Modify: No sweatl
Ll JustTry

Yes No Nol Quite describe {n words describe in words ;

Again|

Let's talk about this as a class. What programs did we come up with?

219

Class Activity Sheet

. Graphic Code
(graphic output destred) (code to draw graphic output)

/XN

Directions:

1) Sketch or look at the graphlcal output destred. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
shown above. You may find it helpful to look at some past problems
from your notes. (choosing a plany

3) Now try and build a program to have the turtle draw the desired graphic

output. You may want to elther write out your code In pencil first, or start
programming directly on the computer. {carrying out the plan)

4) How did the program work? Describe briefly below: (looking bacld)

Desired Qutput? What Seems Wrong? Part to Modify: No swent!
Ycs No Not Quite describe in words describe In words Ll JustTry

Agaln!

Let's talk about this as a class. What programs did we come up with?

220

Gl’gﬂp Class Activity Homework #1 Project Planning Sheet

- Graphi Code
: (graphl%?ﬁ?ﬁ-tgdeslrcd) (program to draw graphle output desired)

Remember to plan your project by using the steps below!

1

~—

Skelch or look at the graphical output destred. (defining the problem)
2) Think about what you will need to do to have the turtle draw the graphic
you have sketched above. You may find it helpful to look at some past problems
from your notes. (choosing a plar)
3) Now try and build a program to have the turtle draw the your desired graphic
oulput, You may want (o elther wrile out your code in penctl first, or start
programming directly on the computer, (carrying out the plar)
Eventually you will need to turn this sheet in with your program wrilten out.

4) How did the program work? You may want Lo kecp a record. (looking back)

Yes No Not Quite describe in words describe in words

Let's talk aboul this as a class, What programs did we come up with?

]

221

Homework Example #1

Calling Procedure Sub-Procedures

To Truck
Body
Movel
Wheel
Move2
Wheel
Move3
Cab

End

To Body
Re%cnt 2(Fd 20 Rt 90 FFd 50 Rt 90]
En

To Wheel
Repeat 10{Fd 3 Rt 36]
End

To Cab

Repeat 4{Fd 10 Rt 90)
Ht

End

A}

To Movel
Pu

Rt 90

Fd 5

Pd

End

To Move2

To Move3
Pu

Fd5

Lt 90

Pd

End

222

LogoWriter Lab Assignment #1 _
The first LogoWriter assignment is to create a program which draws a simple graphic
picture, similar to the truck example distributed In class. The program shtould use at
least 7 seperate procedures, and be executed by typing the name of a sln%le calling
procedure. It should be stored on your LogoWrlter disk within a page called Lastnamel,
{for Instance Smith1).

CRITERIA

At lcast 6 seperate procedures used In the program.......eieersssresisesieiend
Project runs without errors....c.ceiiiicisenincciniinn PPN)
Completed Homeworle Prgject Planning Sheet turned In cernssrnennee cenninens 2
Project has & theme......cciviiiininininiinemiisesnessimmees verererneen w2
Project executes by the typing of a single procedure name.......covvevuniesissssisasinens 2
Project 1s saved correctly, (see below),......cccueeeen. SN rereseane ST |
Totﬂl................................nu.........u-...... --------- XXX 900000000000 00000000000 00000 LYY YT Y .--14 aovearo—
Project saved under a page named: (Lastnemel)

To run the project lype: (name of the calling procedure)

some | rsfnl'nd?r"s-éb?ut"éa'\'/'ln'a y'Eur"' p?oj?cl?' -

Thus lo save vour project while you are working:
1) Check the top of the screen to verify that the

Remember, the LogoWriter "page”, where your age you are working on already has a name
program Is to be stored must first be named fr ?t %e’sn't. name lt%vuh the S}; command. '
with the NP command before your program can

be saved, This naming of a page does not save 2 pregs gscape, this will bring you back to the

your work, but only sets up LogoWr Iter so that conlents page, where the page name should
your work will be automatically saved when you now be Hsted.

press the escape key.

To name & page for LogoWriter project * 1 type: “y'y"At'tng beginning of the lab perlod, first
NP “fastname! (and press return) boot up LogoWr fter , and run your project so
that It shows on the screen. Make sure that
. the page is already named with Lastname!
(for instance: Smith1)

2) Remove your LogoWriter disk from the drive.
3) Place the Lab Instructor’s disk in the drive.
4) Press escape, your project is now saved on the

Instructors disk within a page tdentified with
your last name,

223

Group; Class Activity Homework #2 Project Planning Sheet

B
(gmiwhgﬁ%ﬁrdeslrcd) {program to draw graphic output desired)

Remember to plan your project by using the steps below!

1) Skelch or look at the graphical output destred. {defining the problemd

2) Think about what you will need to do to have the lurtle draw the gmbIUc
you have skelched above. You miay find it helpful {o look at some past problems
from your notes. (choosing a plan)

3) Now try and build a program to have the turtle draw the your desired graphic
oulput. You may want to efther write out your code in penctl first, or start
programming directly on the compuler. {carrying out the plary
Eventually you will need to tum this sheet in with your program writlen out.

1) How did the program work? You may want to keep a record. (looking back)

Yes No NotQuile describe in words describe in words

Let's talk about this as a class. What programs did we come up with?

224

L1 90

' raphi 9%‘!%
(preulou%’c?ﬁmgoulpuv (previously designed code)
Sub-Procedures
Calling Proceduire

To Men To Oneman:X 1olegs:X
Staricorner Legs :X RL 45
Oneman 410 Body :X Fd :X
Movcover 40 Head :X Rt 80
Oneman 30 Armmns X Fd '.x
Moveover 30 End Bl :X
Oneman 20 t{ gg
End To Head :X End

Repeat 36 [Fd :X/20 Rt 10]

End

A}

To Body :X
Fd X
End

To Arms :X
Lt 90

Fd :X

Rt 180
Fd:X*2
Lt 90

End

225

LogoWriter Lab Assignment #2

The second LogoWriter assignment Is to create a program using varlables which draws a
simple graphic picture, similar to the stickmen example distributed In class. ‘The
program should use at least 7 seperate procedures, and be exccuted by typing the name
of a single calling procedure. The project should also use variables somewhere in the
program, It should be stored on your LogoWriter disk within a page called Lastname2,
(for instance Smith?2).

CRITERIA

At least 6 seperate procedures used in the program......cueiiiniiineesinine. 2
Project runs without erTorS....ciiirmmiiiicnnesiiisinsiisinneesieiiceisiieeiesnmee. &
Project uses varlables. ..o cieriiiiniinisnisiiiiemimiiiieiemsciieessesesd
Completed Homeworle Prafect Planning Sheet turned Incccivcinieveisvnnnencnenc2
Project has @ theme. ... &
Project executes by the typing of a single procedure name.......cocevvevevivinnnannee 1
Project ts saved correctly, (see Below),.ivviiiiiiiiiiininiiiieiiieiien. 1

TOtAL i civirinrnniiriiininiiinieiis e s reerss s riereesessnaainsenessesrssesseseres 14

|

Project saved under a page named: (Lastnamel)
To run the project type: {name of the calling procedure)

N W N N W BN Y N PR N AR I BN R A B B W e W B T B B B e W W B w
Some reminders about saving your project:

Naming a LogoWriter page: Thus to save your project while you are worktng:
Remember, the LogoWriler "page”, where your 1) Check the top of the screen lo verily that the
program s to be stored must first be named) page you arcpworklng on already hg’s a name.

with the NP command before your program can '

be saved. This naming of a page docs not save lf il doesn't, name 1t with the NP command.
your work, but only scls up LogoWriler so that 2) Press escape, Lhis will bring you back lo the
your work will be automatically saved when you contents page, where the page name should
press the escape key. now be listed.

To name a page for LogoWriler project #1 type: .
NP “lastnamel (and press return) 1) At the beginning of the Iab perlod, first
boot up LogoWriter, and run your project so
that it shows on (he screen. Make sure that
the page is alrcady nanied with Lastnamel
(for instance: Smithl)

2) Remove your LogoWrller disk from the drive,
3) Place Lthe Lab Instruclor’s disk in the drive.
4) Press escape, your projcct s now saved on the

Instruclors disk within a page tdentified with
your last name. :

226

Class Activity Homework #3 Project Planning Sheet

. Code
(program to draw graphtc output destred)

Graphlie
* {graphlc output destred)

Y

Remember to plan your project by using the steps below!

1) Sketch or look at the graphical output destred. (defining the problem)

2) Think about what you will need to do to have the turtle draw the graphic
you have skelched above. You may find it helpful to look at some past problems
from your notes, (choosing a plary

3) Now try and bulld a program to have the turtle draw the your desired graphic
output. You may want to efther write out your code in pencil first, or start
programming dircctly on the compuler, {carrying out the plary)

Eventually you will need lo turn this sheet in with your program wrilten out.

4) low did the program work? You may want to kecp a record. (looking back)

Yes No Not Quile describe in words describe tn words

Let's talk about this as a class. What programs did we come up with?

‘ Graph_llg
{previous graphic oulput)

To ScaScene 1o Waves ix

Waves 10
Moveleft
Boat 40
Move 40
Boat 30
Move 30
Boat 20
End

227

oqe
(prevlousgy a'eslgned code)

To Body :

If:x <0 [slop] Repeat 2 er ty/2 RL 90 Fd :y Rt 90}
Onewave End
Waves :x-1 Ta Mast iy
End Fd:y/2
Rt 90
To Onewave Fd iy/2
Repeat 180 [Fd .1 Rt 11 1¢gp
Lt 180 Fd :y/2
End Repeat 3 {Fd :y/2 RL 120)
To Boal ty End
Body :y
Mast iy

End

228

LogoWriter Lab Assignment #3

‘he third LogoWriter assignment is to create a program using recursion which draws a
simple graphic picture, similar to the SeaScene example distributed in class. The
program should use at least 7 seperate procedures, and be executed by typing the name
of a single calling procedure. The project should also use recursion somewhere in the
program. It should be stored on your LogoWriter disk within a page called Lastname3,

(for instance Smith3).

CRITERIA
At least 6 seperate procedures used in the program......c.ovvvveiiiirsensiainns 2
Project runs without errors...ce e 2
ProjJect USes reCUrSION. . civi e iiniisissiinssrsnsanssrssssniiracassisencssesensecsnsnsesscssnes &
Completed Homeworlc Profect Planning Sheet turned Incccocviviinnveenne 2
Projcct as @ theMe. i 2
Project executes by the typing of a single procedure name.....c.coveennenenes 1
Project is saved correctly, (see below),...ccceeciiiieriennniiiicniinnmne. 1

111

TOtAL . cieeiiaceerernsreciinennsecicssriesirensresisonssresessnssnssnesnossrsassaessassrssnossssnencese 14

roject saved under a page named: (Lastnamel)
To run the project type: {name of the calling procedure)

Some reminders about saving your project:

.

Naming a.LogoWriter page; Thug to save your project while you are working:
Remember, the LogoWrliter "page”, where your
program Is to be stored must first be named H g}‘:: l;é:;eu}':pw‘grw;; gl::?ré:(;';r}lllg's!ga::ng:g.

with the NP command belore your program can ,

be save d'k 'Igﬂs na{nln g of a page does not savi If it doesn't, name it with the NP command.

your work, but only sets up LogoWriler so tha 2) Press escape, this will bring you back to the

your work will be automatically saved when you) conlents pgg'c where the p%ge name should

press the escape key. now be listed.

To name a page for LogoWrlter project #1 type: v ' .
NP “lastnamel (and press relumn) 1) At the beginning of the lab period, first

bool up LogoWriler, and run your project so
that it shows on the screen. Make sure that
{he page s already named with Lastnamel
(for tnstance: Smithl)

2) Remove your LogoWriler disk from the drive,
3) Place the Lab Instructlor's disk in the drive.
4) Press escape, your project is now saved on the

nstructlors disk within a page tdentiffed with
your last name.

229

" APPENDIX F: ANALOGICAL REASONING PROGRAMMING
INSTRUCTIONAL TECHNIQUE .

Using Sternberg's Component Model to organize programming
instruction for possible analogical reasoning transfer.

Problem done in the

past by students:

A

Problem to be done
by the students

C

B

TO SHACK
SQUARE
MOVEL
TRIANGLE

END

TO SQUARE
REDPEAT 4 {FD 50 RT 90)
END

TO MOVEL
FD 50
RI'30

END

TO TRIANGLE
REPEAT 3 [FD 50 RT 120}
END

e
Students would
be asked to write

code for the graphic
to the left.

A}

Instructional process:

Students would have preulously
developed the code for the SHACK
graphic (A). Based on this knowledge,
they would now be aslced to develop

a program {o draw figure C.

The experimental group would be
Jormally encouraged to follow the
Jollowing steps explicitly, while the
control group would be merely directed
to analyze the previous problem for
help tn developing the new code.

nst ion teps:

Encode rirst students In the
experimental group would be

dtrected to look at the SHACK graphlc
(A) and understand its parts. Then
sludents would be directed to look at
the code in the program for shack (B)

-and lry lo undersland its parts. Finally,

the parts of the graphic in{CWwould be
looked at. The stuclents would be told they
. are "Encoding’

-Infer ts
exﬁg;lme;mﬁ glrgﬂ?)nwom l;fow be told

to analyze the relationship belween the
parts of graphic In A and the parts or
subprocedures of the code In B. They
would be lold they are now “Infering".

Map students In the expertmental
grour would now be lold lo look at the
graphtc In A and the graphic InC to
analyze the relationship or simlarity
between the two graphics. They would
be lold that Uiey are now "mapping".

Apply students in the experlnental
group would now be told to "Apply" by
generaling a possible code (D) to the
new graphic In C. They would then
test thelr code, as would the control
group, and eventually discuss possible
solutlons.

231

APPENDIX G: EXPERIMENTAL LARGE GROUP INSTRUCTOR
OUTLINES

232
Lecture Day 1
Group A
General Outline

Attendence:

1) Verbally ask students to make sure that they are in the A group by
checking their schedules, or if needed, the master lists at the front
of the room.

2) Pass around the split lecture attendence sheets.

Announcements:
1) Remind students that split labs start Wednesday September 28.

2) Remind students to quickly purchase LogoWriter Disks in IRC.
3) Other:

Introduce Logo and the Logo Philosophy
Transparency- eIntroduce Logo and the Logo philosophy.

eIndicate that we will discuss the skill of analogical
reasoning in more detail as a skill typical of
programming.

Introduce Analogical Reasoning

Transparency- *Define analogical reasoning
Transparency- e¢Discuss examples of analogical reasoning

Hlustrate the Process of Analogical Reasoning
Transparency- ¢Mention that analogical is a very global skill, but

that it has been attempted to be duplicated when
people take tests using analogies. Typically, what
is involved in such a test is the process shown.

Relate Analogical Reasoning to Programming

Transparency- *Discuss how expert programmers use analogical
reasoning.

Introduce LogoWriter

Boot up Disk- *Show initial entry screen, choosing new page
eShow the following primitives:
(asking students to take notes, and predict the
outcome of typed primitive commands)

FD xx RT xx PU OG HT
BK xx LT xx PD HOME ST

Distribute End of Period Mini-Quiz (if time,
Pass out the quiz, allow students to answer right on the half sheet of paper.
Remind students to place name, lab section, and A/B group on quiz.

233
Lecture Day 2

Group A - General Outline

Attendence:

1) Verbally ask students to make sure that they are in the A group by
checking their schedules, or if needed, the master llsts at the front
of the room. (right before class starts)

2) Pass around the split lecture attendence sheets.

Announcements:
1) Remind students that split labs start Wednesday September 28.

2) Remind students to quickly purchase LogoWriter Disks in IRC.
3) Other:

Review Primitives
On Computer- *Review briefly booting up LogoWrliter as it boots.

*Review some primitives
(emphasize PU, PD, CG, HOME)
*Discuss primitive sequence for drawing a square

Introduce the Repeat Command

On Computer- eIntroduce the repeat command with a square:
' Repeat 4 [Fd 50 Rt 90}

*Ask students to predict what happens when
a change is made:
Repeat 4 ------- > Repeat 8

Introduce Procedures
On Computer- *Show how to define procedures by use of a square:
(Using open-apple-f editor)

To Square
Repeat 4 [Fd 50 Rt 90]
End .

*Change square within the editor to a different size.
Change Fd 50 ----- >Fd 30

eShow that the computer now knows a new word by:
Repeat 5 [Square Rt 45]

Activity Sheet L2A- (pass out sheet now)

(Students should always write on these sheets in case of a quiz, which may
or may not be open notes!)

Transparency- eLead students in discussion through steps of sheet
(ENCODE, INFER, MAP, APPLY)

*REMIND students that we are essentially using a

‘ 234
process that is to help us understand a new problem
based on what we know from a previous problem

On Computer- *Show a student example of the solution
' (if running out of time use the transparency answer)

*Mention or discuss the angle of 120 degrees

Namepage Command and Saving
On Computer- oShow namepage command of: Np "XXXXX

*Discuss necessity of hitting escape

235
Lecture Day 3
Group A - General Outline

Attendence:
1) Ask students to make sure that they are in the A group by

checking their schedules, or if needed, the master lists at the front

of the room. (right before class starts) ‘
2) Pass around the split lecture attendence sheets.

Announcements:
1) Remind students that split labs start tommorrow Wednesday Sept. 28.

(Lists at the front of the room will show where students need to go)
2) Remind students to purchase LogoWriter Disks in the IRC before lab.

3) . Other:

Review Procedures
On Computer- *Briefly show again the following procedures:
(including getting in and out of the editor)

To Square To Triangle
Repeat 4 [Fd 40 Rt 90] Repeat 3 [Fd 50 Rt 120]
End End

Introduce Procedures within Procedures

On Computer- Show that procedures can be placed within procedures:

To Stack (Square already in the editor)
Square

Fd 50

Square

End

*Show that a staggered stack could be made with:
(placing positioning commands in a move procedure)

To Stack (with) To Move

Square Fd 50
Move Rt 90
Square Fd 25
End Lt 90
End

Activity Sheet #L.A3 (pass out sheet now)

Transparency- eLead students in a discussion of steps on the sheet
(ENCODE, INFER, MAP, APPLY)

On Computer- *Show a typical answer (either student's or prepared one)

Transparency- eDebrief the answer shown on the transparency
sEmphasize the move statement, and modularity

236

Discuss Homework Assignment #1
(all three of the following will be passed out and rediscussed in lab)

Transparency- *Show example project for Homework #1 .
' sproject should be as extensive, run with one
command, and be broken into parts.
estudents should plan first in pencil by carefully
looking at the example project.
sstudents should take advantage of previous sheets

Transparency- eShow the grading criteria sheet for the project.
estudents will need to turn in a project on disk,
a planning sheet, and a criteria sheet.

Administer End of Period Mini-Quiz (if time)

237
Lecture Day 4
Group A - General Outline

Attendence: - :
1) Ask students to make sure that they are in the A group by

checking their schedules, or if needed, the master lists at the front

of the room. (right before class starts) :
2) Pass around the split lecture attendence sheets.

Announcements:
1) Remind students they should be attending split labs now.

(Lists at the front of the room will show where students need to go)
2) Remind students to purchase LogoWriter Disks in the IRC before lab.
'3) Remind students that their first LogoWriter project will be due at the
start of their second LogoWriter Lab, and that three things will need to
be turned in:
1) a project on disk of at least 6 procedures
2) a planning sheet with a written copy of the program
3) a criteria sheet with the name of the project

3) Other announcements:
Introduce Variables
On Computer- eBriefly show square procedure:
To Square discuss that if we want
Repeat 4 [Fd 50 Rt 90] a square of a different
End size, we need to go in
and actually change the
procedure or retype with
a slighly different name. .
To Square :X show that this procedure
Repeat 4 [Fd :X Rt 90] is much more powerful
End and flexible.
eShow the Boxes procedure using variables:
To Boxes
Square 50 Type: Boxes
Square 40
Square 30 Thus procedures using variables can
End be placed within other procedures.
eModify the Boxes procedure to take input:
To Boxes :X
Square :X Type: Boxes 50, or Boxes 70, etc...
Square :X-10
Square :X-20 Thus the variable can be passed
End Jrom an input to the calling procedure

to internal subprocedures.

’ 238
Activity Sheet #LA4 (pasgs out gsheet now)

Transparency- e¢Lead students in discussion of steps on the sheet
(ENCODE, INFER, MAP, APPLY)
sEmphasize how looking back at past problems help
(in this case, the procedure we did for a house helps)

On Computer- eShow a typical example (either student's or prepared one)

Transparency- eDebrief the answer shown on the transparency
sEmphasize the syntax format for variable procedures

Mention Homework Assignment #2

eMerely mention that homework assignment number 2
will be similar to the first, but will use variables. -
eIt will be discussed in more depth next lecture and in lab

Administer End of Period Mini-Quiz (if time)

239
Lecture Day b
Group A
General Outline

Announcements:
¢ Remind students that their quizzes will be returned duting the
second LogoWriter lab.

¢ Remind students that the Lecture midterm will be Thursday, Oct. 27

¢ Remind students that Lab Midterms will begin Wednesday, Oct. 19

¢ Remind students that Thursday will be the last split lecture, but that

split lab: will continue for a total of three Logowriter lab meetings.
Other

_Bevieiv Single Variable Procedures
On Computer- *Show the single variable procedure for a rectangle:
' *Run the procedure with various inputs

To Rectangle :W.
Repeat 2 [Fd :W Rt 90 Fd 100 Rt 90]
End

Introduce Two Variable Procedures
On Computer- eModify the rectangle procedure to use two inputs:

*Run the procedure with various inputs

To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
‘End

Show the Fill Command
On Computer- eDraw a rectangle of typical dimensions
(use the rectangle procedure in the editor)

oFill in the rectangle by use of the following:
Type in Immediate Mode: Colors:(on chalkboard)
Pu

0 Black
Rt 45 1 White
Fd 10 2 Green
Pd 3 Violet
SetC 1 4 Orange
Fill 5 Blue

eClear the screen, and try again with a different color

esEmphasize that LogoWriter will not fill when the
turtle is setting on a line.

240
Activity Sheet #LA5 (pass out sheet now)
Transparency- eLead students through steps on the sheet
' *Ask students.to identify what the next step is and
what is to be done during that step.
(ENCODE, INFER, MAP, APPLY)

On Computer- eShow a typical answer (student or prepared)
sEmphasize that it might be useful to move back out
of the square at the end of the procedure.

Review the General Nature of Analogical Reasoning -

Transparency- eRemind students of the general definition of
analogical reasoning, and that we have been
attempting to use it in helping us program.

Transparency- *Show the Coaches ProblemTransparency
eBrainstorm other possible applications

Review Homework Assignment #2

Transparency- eShow "stick people" example project using variables
and explain the importance of using the analogical
reasoning sheet for homework planning.

*Mention that the homework project for Logo lab #2
will be similar to the first project, except that it will
require variables. (more fully explained in lab)

Administer End of Period Mini-Quiz (if time)

241
Lecture Day 6

Group A
General Outline

Review Tw6 Variable Procedures
On Computer- *Briefly show again the procedure of

To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
End

Introduce Recursion
On Computer- <Type the following, ask students to predict output:
(explain that procedure calls itself, etc....)

To Boxes :X (Square :X already in editor)
Square :X
Boxes :X - 10 (Use initial input of 50, etc...)
End

°Add a conditional statement to stop the recursion:
If :X « O [Stop] (placed after To Boxes :X line)

eShow the following, ask students to predict output:
(already typed in on demo disk)

To Stack :X To Move :X
Square :X Fd :X

Move :X End

Stack :X - 10

End

*Add stop statement
If :X < 0 [Stop] (placed after To Stack :X line)

Activity Sheet #1.A6_(pass out sheet now)

Transparency- *Work through reasoning sheet with students
(ENCODE, MAP, INFER, APPLY)

On Computer- eShow a student example
sEmphasize the move statement, and modularity
Handout- *Pass out student answer sheet for recursive houses.

Discuss Homework Assignmeht #3
Transparency- eShow typical Example Homework Assignment #3

*Review how to correctly use the planning sheet
*Review the necessity to turn in the completed
planning sheet

242
Administer End of Period Mini-Quiz (only if time)

*Allow use of previous activity sheet

243

APPENDIX H: CONTROL LARGE GROUP INSTRUCTOR OUTLINES

'

244
Lecture Day 1
, Group B
General Outline

Attendence:

1) Verbally ask students to make sure that they are in the A group by
checking their schedules, or if needed, the master lists at the front
of the room.

2) Pass around the split lecture attendence sheets.

Announcements:
1) Remind students that split labs start Wednesday September 28.

2) Remind students to quickly purchase LogoWriter Disks in IRC.
3) Other: '

Introduce Logo and the Logo Philosophy
Transparency- eIntroduce Logo and the Logo philosophy.

eIndicate that we will discuss the skill of analogical
reasoning in more detail as a skill typical of
programming.

Introduce Analogical Reasoning

Transparency- ¢Define analogical reasoning
Transparency- *Discuss examples of analogical reasoning

Illustrate the Process of Analogical Reasoning

Transparency- eMention that analogical is a very global skill, but
that it has been attempted to be duplicated when
people take tests using analogies. Typically, what
is involved in such a test is the process shown.

Relate Analogical Reasoning to Programming

Transparency- Discuss how expert programmers use
analogical reasoning.

Introduce LogoWriter

Boot up Disk- eShow initial entry screen, choosing new page
eShow the following primitives:
(asking students to take notes, and predict outcome
to typed primitive command)

FD xx RT xx PU CG HT
BK xx LT xx PD HOME ST

Distribute End of Period Minl-Quiz {if ¢imie}

Pass out the quiz, allow students to answer right on the half sheet of paper.
Remind students to place name, lab section, and A/B group on quiz.

245
Lecture Day 2
Group B - General Outline

Attendence:

1) Verbally ask students to make sure that they are in the A group by
checking their schedules, or if needed, the master lists at the front
of the room. (right before class starts)

2) Pass around the split lecture attendence sheets.

Announcements: _

1) Remind students that split labs start Wednesday September 28.
2) Remind students to quickly purchase LogoWriter Disks in IRC.
3) Other:

Review Primitives
On Computer- *Review briefly booting up LogoWriter as it boots.
*Review briefly some primitives
(emphasize PU, PD, CG, HOME)
*Discuss primitive sequence for drawing a square

Introduce the Repeat Command

On Computer- eIntroduce the repeat command with a square:
Repeat 4 [Fd 50 Rt 90]
*Ask students to predict what happens when a
change is made:
Repeat 4 ------- > Repeat 8

Introduce Procedures

On Computer- *Show how to define procedures by use of a square:
(Using open-apple-f editor)

To Square
Repeat 4 [Fd 50 Rt 90]
End

*Change square within the editor to a different size.
Change Fd 50 ----- > Fd 30

eShow that the computer now knows a new word by:
Repeat 5 [Square Rt 45]

Activity Sheet L2B - (pass out sheet now)

(Students should always write on these sheets in case of a quiz, which may
or may not be open notes!)

Transparency- *Ask students to write a procedure for a triangle

On Computer- eShow a student example
(if running out of time use the transparency answer)

246

*Mention or discuss the angle of 120 degrees

Namepage Command and Saving
On Computer- oShow namepage command of: Np "XXXXX

eDiscuss necessity of hitting escape

247
Lecture Day 3

' Group B - General Outline
Attendence:
1) Ask students to make sure that they are in the A group by
checking their schedules, or if needed, the master lists at the front
of the room. (right before class starts)
2) Pass around the split lecture attendence sheets.

Announcements:
1) Remind students that split labs start tommorrow Wednesday Sept. 28.

(Lists at the front of the room will show where students need to go)
2) Remind students to purchase LogoWriter Disks in the IRC before lab.
3) Other:

Review Procedures
On Computer- eBriefly show again the following procedures:

(including getting in and out of the editor)

To Square To Triangle
Repeat 4 [Fd 50 Rt 90] Repeat 3 [Fd 50 Rt 120]
End End

Introduce Procedures within Procedures

On Computer- eShow procedures can be placed within procedures:

To Stack (Square already in the editor)
Square

Fd 50

Square

End

*Show that a staggered stack could be made with:
(placing positioning commands in a move procedure)

To Stack (with) To Move

Square Fd 50
Move Rt 90
Square Fd 25
End Lt 90
End

Activity Sheet #LB3 (pass out sheet now)

Transparency- *Ask students to try and write a procedure for a house.
On Computer- *Show a student example and discuss

Transparency- eDebrief the prepared answer shown on the transparency
eEmphasize the move statement, and modularity

248

Discuss Homework Assignment #1
(all three of the following will be passed out and rediscussed in lab)

Transparency- eShow typical Example Homework Assignment #1
eproject should be as extensive, run with one
command, and be broken into parts.

Transparency- eShow the required student planning sheet.
*STUDENTS WILL USE THIS SHEET
INTERACTIVELY TO RECORD THEIR PROJECT
WHILE DEVELOPING IT ON THE COMPUTER.

Transparency- *Show the grading criteria sheet for the project.
‘ estudents need to turn in a project on disk,
planning sheet, and criteria sheet.

Administer End of Period Mini-Quiz

249
Lecture Day 4
Group B- General Outline

Attendence:
1) Ask students to make sure that they are in the B group by

checking their schedules, or if needed, the master lists at the front

of the room. (right before class starts)
2) Pass around the split lecture attendence sheets.

Announcements:

1) Remind students they should be attending split labs now.
(Lists at the front of the room will show where students need to go)

2) Remind students to purchase LogoWriter Disks in the IRC before lab.

3) Remind students that their first LogoWriter project will be due at the
start of their second LogoWriter Lab, and that three things will need to
be turned in: ,

1) a project on disk of at least 6 procedures

2) a planning sheet with a written copy of the program

3) a criteria sheet with the name of the project

3) Other announcements:

Introduce Variables -

On Computer- e¢Briefly show uare procedure:
To Square discuss that if we want
Repeat 4 [Fd 50 Rt 90] a square of a different
End size, we need to go in

and actually change the
procedure or retype with
a slighly different name.

To Square :X show that this procedure
Repeat 4 [Fd :X Rt 90] is much more powerful
End and flexible.

sShow the Boxes procedure using variables:

To Boxes '

Square 50 Type: Boxes

Square 40

Square 30 Thus procedures using variables can
End be placed within other procedures.
sModify the Boxes procedure to take input:

To Boxes :X

Square :X Type: Boxes 50, or Boxes 70, etc...
Square :X-10

Square :X-20 Thus the variable can be passed

End Jrom an input to the calling procedure

to internal subprocedures.

250
Activity Sheet #LB4 (pass out sheet now)

Handout- *Ask students to write a procedure for drawing a house of
any size using variables.

Transparency- ePlace a transparency of the past house procedure on the
screen in case students would like to look at it.

GIVE NO INITIAL DISCUSSION OF THE TRANSPARENCY,
JUST ALLOW STUDENTS TO REFERENCE IT SHOULD
THEY DESIRE TO.

On Computer- sShow a typical example (either student's or prepared one)

| Transparency- *Debrief the prepared answer shown on the transparency
*Emphasize the syntax format for variable procedures

Mention Homework Assignment #2

*Merely mention that homework assignment number 2
will be similar to the first, but will use variables.
oIt will be discussed in more depth next lecture and in lab

Administer End of Period Mini-Quiz (if time)

251
Lecture Day 5
Group B
General Outline
Announceinents:
¢ Remind students that their quizzes will be returned during the
second LogoWriter lab. ‘
¢ Remind students that the Lecture midterm will be Thursday, Oct. 27
* Remind students that Lab Midterms will begin Wednesday, Oct. 19
¢ Remind students that Thursday will be the last split lecture, but that
split lab}f will continue for a total of three Logowriter lab meetings.
Other

Review Single Variable Procedures

On Computer- eShow the single variable procedure for a rectangle:
*Run the procedure with various inputs

To Rectangle :W
Repeat 2 [Fd :W Rt 90 Fd 100 Rt 90]

End

Introduce Two Variable Procedures

On Computer- eModify the rectanigie procedure to use two inputs:
*Run the procedure with various inputs

To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90}
End

Show thé Fill Command

On Computer- eModify the rectangle procedure to use two inputs
(use the rectangle procedure in the editor)

oFill in the square by use of the following

Type in Immediate Mode; Colors:(on chalkboard)
Pu

0 Black
Rt 45 1 White
Fd 10 2 Green
Pd 3 Violet
SetC 1 4 Orange
: 5 Blue

Activity Sheet #LB5 (pass out sheet now)

Transparency- eAsk students to write a procedure to draw a
triangle of any dimension, filled with any color.

(using two inputs)

On Computer- *Show a typical answer (student or prepared)
eEmphasize it might be useful to move back out of

square at the end of the procedure.

252
Review Homework Assignment #2

Transparency- *Show the "stick people" example project using
variables, and discuss that the second project will
be similar to the first project, except that it will
require variables. (more fully explained in lab)

Fill Time (fill extra time with non Logo actitivity)

Activity- sPerhaps show MultiScribe, or Kings Rule, etc...

Administer End of Period Mini-Quiz (if time)

253
Lecture Day 6

Group B
General Outline

Review TWO' Variable Procedures
On Computer- Briefly show again the procedure of:

To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90}
End

Introduce Recursion
On Computer- *Type the following, ask students to predict output:
(explain that procedure calls itself, etc.....)

To Boxes :X (Square :X already in editor)
Square :X
Boxes :X - 10 (Use initial input of 50, etc...)
End

*Add a conditional statement to stop the recursion:
If :X < O [Stop] (placed after To Boxes :X line)

eShow the following, ask students to predict output:
(already typed in on demo disk)

To Stack :X To Move :X
Square :X Fd :X

Move :X End

Stack :X - 10

End

*Add stop statement
If :X <0 [Stop] (placed after To Stack :X line)

Activity Sheet #LB6 (pass out sheet now)

Transparency- *Ask students to write a procedure for
recursive houses.
(may leave House program up .on computer screen)

On Computer- *Show a student example
eEmphasize the move statement, and modularity
Handout- sPass out student answer sheet for recursive houses.

Discuss Homework Assignment #3

Transparency- eShow typical Example Homework Assignment #3

*Pass out the example sheets for student reference
sReview necessity to turn in the planning sheet also

254
Administer End of Period Mini-Quiz {only if time)

*Allow use of previous activity sheet

255

APPENDIX I: EXPERIMENTAL LAB INSTRUCTOR OUTLINES

256
Lab #1

Group A
| General Outline

Roll Call, Record Keeping, Anouncements

¢ Ask each student their name and place a check on the roster as they enter.
(please make sure students are in the rlght placel)

* Collect Appleworks Assignment
(students hand it in as soon as they come ln)
(assume students have saved to disk, let them keep their disk)

* Mention to students that part of the instruction will involve turning on and
turning off the monitors, so that everyone is doing the same thing

MONITORS ON
Boot up LogoWriter
e Insure all students have a LogoWriter disk, (loan or trade those who don't).
¢ Have all students boot up LogoWriter, (and start a new page)

Practice with the Primitives
On Computers- e*Allow students to practice using the primitive commands
(about 5 minutes, primitives are on chalkboard)

FD xx RT xx PU HT HOME
BK xx LT xx PD ST oG

Practice with the Repeat Statement

On Computers-, e*Allow students to practice using the repeat commands
(exploration for about 5 minutes, trying these examples)
(these should be on the chalkboard also)

Repeat 4 [Fd 50 Rt 90] (square)
Repeat 3 [Fd 50 Rt 120] (triangle)
Repeat 2 [Fd 50 Rt 90 Fd 100 Rt 90] (rectangle)

Review Procedures MONITORS OFF
Demonstration- eShow how to enter the "open-apple-F" editor
eShow again how to build these procedures:

To Square To Triangle
"Repeat 4 [Fd 50 Rt 90] Repeat 3 [Fd 50 Rt 120]
End End

MONITORS ON
On Computers- eHave students enter and test the Square and Triangle
(about 5 min)

257
MONITORS OFF

Analogical Reasoning Sheet #SA1 (pass out sheet now)

Transparency-
On Computers-

Discussion-

*Work through sheet step by step with student discussion
(ENCODE, INFER, MAP, APPLY) Students not on computer

MONITORS ON '
*Have students try their program on the computer
(students keep a record on the activity sheet)

MONITORS OFF
esShow the transparency of a typical answer
*Review the procedure and respond to questions

Review Procedures within Procedures

Demonstration-

eReview how to use procedures in procedures with:

To Stack To Rectangle
Rectangle Repeat 2 [Fd 25 Rt 90 Fd 50 Rt 90]
Move End

Rectangle

End - To Move
Fd 25
End

MONITORS STILL OFF

Analogical Reasoning Sheet #SA2 (pass out sheet now)

Transparency-

On Computers-

Discussion-

sWork through sheet step by step with student discussion
(ENCODE, INFER, MAP, APPLY) Students not on computer

MONITORS ON
sHave students try their program on the computer
(students keep a record on the activity sheet)

MONITORS OFF
sShow the transparency of a typical answer
*Review the procedure and respond to questions

MONITORS STILL OFF

Review Homework Assignment #1

Transparency-

eInsure that students have a homework planning sheet

sInsure that students have a homework grading sheet
(will hand in disk, planning sheet, & grading sheet)

sDiscuss what will need to be handed in for a grade

eShow Example Homework Assignment #1 Transparency

STUDENTS MUST SHOW A FAIRLY COMPLETE
PLANNING SHEET TO THE LAB INSTRUCTOR BEFORE
BEING ALLOWED TO TURN ON THEIR MONITOR AND
BEGIN TO WORK ON THE COMPUTER

258

MONITORS ON

Allow students to work on Homework
: For rest of period, work on respective homework.

To save use NP "lastnamel command, and press escape

Administrative:

259
Lab Day 2
Group A
General Outline

e Hand back any papers that need to be returned to students.
¢ Have students turn in their LogoWriter projects by:
1) Booting up their project so that it shows on the screen.
2) Making sure that the page holding their project is named with
their "lastnamel", if not, they need to rename the page with

this name. .
3) Inserting the instructor's master disk, and pressing escape

(this saves it on the instructor's disk)

4) Students must turn in their planning and criteria sheets,
but will keep their own LogoWriter disk.

Review Variables

Demonstration-

On Computers-

Demonstration-

MONITORS OFF
*Briefly show the variable square and triangle procedures:
To Square :X To Triangle :X
Repeat 4 [Fd :X Rt 90] Repeat 3 [Fd :X Rt 120]
End End

eMention that to run these you must type Square 50, etc...

MONITORS ON
*Have students enter and test the square and
triangle procedures using variables.

MONITORS OFF

*Discuss the Stack procedure using variables:

(type it in and ask students for a prediction of output
when Stack 40 is run)

To Stack :X

Square :X (Square :X already in editor)
Fd X

Square :X - 10

Fd :X-10

Square :X - 20

End

Activity Sheet #SA3 (pass out sheet now)

Transparency-

eLead students in a discussion of steps on the sheet

*Also ask students which "step" comes next, and what that
step entails, before the discussion used for each step.
(ENCODE, INFER, MAP, APPLY)

eEmphasize how looking back at a past problem helps

260

MONITORS ON
On Computer- eLet students test their written program on the computer
eStudents should try to keep a record of the output as on sheet

MONITORS OFF ‘
Transparency- eDiscuss with students the example answer to this sheet.

Review Procedures with Two Variable Input

Demonstration- eBriefly show and discuss the variable rectangle procedure

To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]

End

Activity Sheet #SA4 (pass out sheet now)

Transparency- eLead students in a discussion of steps on the sheet
eAlso ask students which "step” comes next, and what that
step entails, before the discussion used for each step.
(ENCODE, INFER, MAP, APPLY)

sEmphasize how looking back at a past problem helps

MONITORS ON
On Computer- eLet students test their written program on the computer
*Students should try to keep a record of the output as on sheet

: MONITORS OFF 4
Transparency- eDiscuss with students the example answer to this sheet.

Review Homework Assignment #2

*Distribute the homework planning sheets and criteria sheets.

Transparency- eDiscuss what is expected for Homework assignment #2
by going over the planning and criteria sheets.

STUDENTS MUST SHOW THE LAB INSTRUCTOR A
GRAPHIC PICTURE AND PLANNED CALLING PROCEDURE
BEFORE BEGINNING THEIR PROJECT ON THE

COMPUTER.

Note:
Students will only be required to write out the calling procedure

on their planning sheet, no other details will be necessary
to turn in! Mention that on the midterm, students will probably
not have enough time to write everything out before typing it

in, so students should try to continue their careful planning. but

without the necessity of writing everything out in pencil first.

261
Allow students to work on Homework

eFor rest of period, work on respective homework
sStudents will need to turn in a project on disk, a planning
sheet with graphic and calling procedure, and a criteria
sheet.

Make sure students save at least once while in lab,
eStudents should leave lab with at least part of their

project saved under a page named with "lastname2"

262
Lab Day 3
Group A
General Outline

Review Recﬁrsion
Demonstration- eBriefly show the recursive procedure:
(ask for a prediction of what it does)

To Boxes :X To Square :X

Square :X Repeat 4 [Fd :X Rt 90]
Boxes :X-10 End

End

*Ask students what is occuring,
(Boxes is calling itself, etc...)

*Add a stop statement: If :X<10 [Stop]

Demonstration- eNow show the following recursion example:
(Ask students for output predictions, given specific input)

To Colil :X To Circle

If :X <1 [Stop] Repeat 36 [Fd 2 Rt 10]

Circle End

Move

Colil :X-1 To Move

End Pu
Fd 20 ~ (use Cotil 5, Coil 4, etc....)
Pd
End

On Computers- eHave students try to type in and run the coil procedure.

Activity Sheet #SAS (pass out sheet now)

Transparency- eLead students in a discussion of steps on the sheet
(ENCODE, INFER, MAP, APPLY) Students not on computer
sEmphasize how looking back at a past problem helps

On Computer- eLet students test their written program on the computer
sStudents should keep a record of the output as on sheet -

Transparency- eDiscuss with students the example answer to this sheet.

A Brief Discussion of Analogical Reasoning

Discussion- eAsk students the following Questions

1) How do these these sheets compare to what a good
programmer does?
2) Again, what is "analogical reasoning"?

263
3) What sorts of occupations might depend on
analogical reasoning? (Doctors, Carpenters, etc.....)

Review Homework Assignment #3

Transparency- eShow typical Example Homework Assignment #3
*EMPHASIZE how to use planning sheet
(Handout glven (n lecture, extras available)

*Must hand in program and planning sheet for full credit
*To save use NP "lasthame3 command, and press escape

Allow students to plan Homework

*Students must show Lab Instructor a fairly completed
planning sheet before beginning to work on the computer.

Aliow students to work on Homework

eFor rest of period, work on respective homework.

264

" APPENDIX J: CONTROL LAB INSTRUCTOR OUTLINES

265
Lab #1

Group B
General Outline

Roll Call, Récord Keeping, Anouncements

* Ask each student their name and place a check on the roster as they enter.
(please make sure students are in the right placel)

. Collect Appleworks Assignment
(students hand it in as soon as they come in)
(assume students have saved to disk, let them keep their disk)

* Mention to students that part of the instruction will involve turning on and
turning off the monitors, so that everyone is doing the same thing

' MONITORS ON
Boot up LogoWriter
* Insure all students have a LogoWriter disk, (loan or trade those who don't).
* Have all students boot up LogoWriter, (and start a new page)

Practice with the Primitives
On Computers- eAllow students to practice using the primitive commands
(about 5 minutes, primitives are on chalkboard)

FD xx RT xx PU HT HOME
BK xx LT xx PD ST - CG

Practice with the Repeat Statement .

On Computers- eAllow students to practice using the repeat commands
(exploration for about 5 minutes, trying these examples)
(these should be on the chalkboard also)

Repeat 4 [Fd 50 Rt 90] (square)
Repeat 3 [Fd 50 Rt 120] (triangle)
Repeat 2 [Fd 50 Rt 90 Fd 100 Rt 90] (rectangle)

Review Procedures MONITORS OFF
Demonstration- eShow how to enter the "open-apple-F" editor
*Show again how to build these procedures:

To Square To Triangle
Repeat 4 [Fd 50 Rt 90] Repeat 3 [Fd 50 Rt 120}
End End

MONITORS ON
On Computers- eHave students enter and test the Square and Triangle
(cbout 5 min)

266
MONITORS STILL ON
Clasg Activity Sheet #SB1 (pass out sheet now)
On Computers- e¢Have students try to develop a program for the shape of
: the figure on the activity sheet. They should be
encouraged to work immediately on the computer.

eEncourage students to keep a record of output attempts
and any other notes on the activity sheet.

MONITORS OFF
Discussion- Show the transparency of a typical answer
eReview the procedure and respond to questions

Review Procedures within Procedures
Demonstration- eReview how to use procedures in procedures with:

To Stack To Rectangle
Rectangle Repeat 2 [Fd 25 Rt 90 Fd 50 Rt 90]

Move End

Rectangle

End To Move
Fd 25
End

MONITORS ON
Activity Sheet #SB2 (pass out sheet now)
On Computers- eHave students try to develop a program for the shape of
the figure on the activity sheet. They should be
encouraged to work immediately on the computer.

*Encourage students to keep a record of output attempts
and any other notes on the activity sheet.

MONITORS OFF
Discussion- eShow the transparency of a typical answer
eReview the procedure and respond to questions

MONITORS STILL OFF
Review Homework Assignment #1

eInsure that students have a homework planning sheet

eInsure that students have a homework grading sheet
(will hand in disk, planning sheet, & grading sheet)

eDiscuss what will need to be turned in for a grade

Transparency- eShow Example Homework Assignment #1 Transparency

267
MONITORS ON
*Encourage students to begin work on the computer
immediately. They can write out their planning sheet
at any time, it just must eventually be completed as part
of the overall assignment.

*For rest of period, work on respective homework.
*To save use NP "lastnamel command, and press escape

keview \;arlables

Demonstration-

On Computers-

Demonstration-

On Computers-

268
Lab Day 2
Group B
General Outline

*Briefly show the variable square procedure:
To Square :X

Repeat 4 [Fd :X Rt 90]

End

*Have students enter and test a square procedure
which uses variables.

eDiscuss the Stack procedure using variables:
(type it in and ask students for a prediction of output)

To Stack :X

Square :X (Square :X already in editor)
Fd X

Square :X - 10

Fd :X -10

Square :X - 20

End

*Have students try to type in and run the stack procedure.

Activity Sheet #SB3 (pass out sheet now)

On Computers-

Discussion-

eHave students try to develop a program for the shape of
the figure on the activity sheet. They may either work
directly on the computer or write it in pencil first.

eEncourage students to keep a record of output attempts
(bottom part of the sheet)

eDiscuss with students, the example answer to this sheet

Review Procedures with Two Variable Input

Demonstration-

*Briefly show and discuss the variable rectangle procedure

To Rectangle :W :L
Repeat 2 [Fd :W Rt 90 Fd :L Rt 90]
End

*Have students type in and try this procedure

269
Activity Sheet #SB4 (pass out sheet now)

On Computers-

Discussion-

*Have students try to develop a program for the shape of
the figure on the activity sheet. They may either work
directly on the computer or write it in pencil first.

*Encourage students to keep a record of butput attempts
(bottom part of the sheet)

eDiscuss with students, the example answer to this sheet

Review Homework Assignment #2

Transparency-

sShow typical Example Homework Assignment #2
*Mention that students may want to plan first with sheet
(Handout given in lecture, extras available)

*MUST hand in program and planning sheet for full credit!
*To save use NP "lastname2 command, and press escape

Allow students to work on their Homework

*Students may either work immediately on the computer,
or use the planning sheet first. However, the planning
sheet must be completed when it is handed in.

*Rest of period, students work on respective homework.

270
Lab Day 3
Group B
General Outline

Review Recursion

Demonstration-

Demonstration-

On Computers-

*Briefly show the recursive procedure:
(ask for a prediction of what it does)

To Boxes :X To Square :X

Square :X Repeat 4 [Fd :X Rt 90
Boxe: :X-10 End :
End

*Ask students what is occuring.
(Boxes is calling itself, etc...)

*Add a stop statement: If :X<10 [Stop}

sNow show the following recursion example:
{Ask students for output predictions, given specific input)

To Colil :X To Circle :

If :X<1([Stop] Repeat 36 [Fd 2 Rt 10]

Circle End

Move

Coil :X-1 To Move

End Pu
Fd 20 (use Cofl 5, Coll 4, etc....)
Pd
End

eHave students try to type in and run the coil procedure.

Activity Sheet #SB5 (pass out sheet now)

On Computers-

Discussion-

*Have students try to develop a program for the shape of
the figure on the activity sheet. They may either work
directly on the computer or write it in pencil first.

eEncourage students to keep a record of output attempts
(bottom part of the sheet)

*Discuss with students, the example answer to this sheet

271

A Brief Discussion of Logo

Discussion-

*Ask students the following Questions

1) How could you use LogoWriter in the classroom?

(contests, projects, etc......)
2) Does using LogoWriter in pairs help or hurt students?

3) How old should students be using LogoWriter?
(actually any age, etc......)

Review Homework Assignment #3

Transparency-

eShow typical Example Homework Assignment #3
eMention that students may want to plan first with sheet
(Handout given in lecture, extras available)

*MUST hand in program and planning sheet for full credit!
*To save use NP "lastname3 command, and press escape

Allow students to work on their Homework

eStudents may either work immediately on the computer,
or use the planning sheet first. However, the planning -
sheet must be completed when it is handed in.

*Rest of period, students work on respective homework.

272

APPENDIX K: REUSE OF SUBPROCEDURES PROGRAMMING TEST

Dlrectlons:

1) All five problems must be done on the same

2) The page will be named by use of NP "lastname.M .
here on the screen but can not wrap around the screen.
4) Problems must be done in order and each inain procedure for each

, 3] Graphlcs can be an

. . problem should be called To Apro, To Bpro,
6) Remember, procedures should

{\pro

7
LogoWriter Prouugtlo?l Test for SecEd 101

single page in LogoWrliter.

To Cpro, To Dpro, To Epro, etc...

e well written and modular tn structure,
6) When you wish lo save, as always, merely press escape;
the disk that your midterm s saved on,

One grld square, [1,= 6 turtle steps on each slde

i

[+1

.
] ’

Bpro
HTHH
| Dpro
|
30 1
ou JF
30
40 l4o n
20 |- l
11310 %0
L
1 2 T
] T T 11
| .
B | 11
o 14 10
Cpro Epro 20
10
H .
: LT
il i
- a
] 1 ymn t
E 2 5 ! ‘o :
R !»a hid [4
i i LRI
g &k 1
] 40 @SR 7 A7 ESRGE
o "_5‘::") rize 'tl Db #i
k LN 0 O O N DR N N N

you will hand in

......

274

APPENDIX L: LOGOWRITER BASIC COMPREHENSION TEST

275
ntroductog LogoWriter Basic Comprehension Test

(Turtle Graphics)

The following is a list of general objectives tested by this test. The test is
designed to examine the basic knowledge and understanding of some
fundamental Logo commands and concepts. This test is targeted at the
Bloom Taxonomy levels of Knowledge and Comprehension only, and does
not attempt to measure higher levels of learning. Higher order
programming concepts such as modularity, and top-down design, are
utilized in the test questions, but are not targeted specifically for evaluation.

Basic Objectives:

1. Basic Turtle Commands (Primitives)

1.1) The student is able to identify the function of primitive commands.
1.2) The student is able to differentiate between pre-defined primitive
commands, and user defined procedures, within the Logo language.

1.3) The student is able to predict changes in the turtle's state, (heading
and position), implemented by sequences of primitive commands.

1.4) The student is able to predict the graphical output produced by
sequences of primitive commands.

2. Repeat Commands

2.1) The student is able to identify the proper syntax of the repeat
command. _

2.2) The student is able to select an equivalent repeat statement for a
repeated sequence of primitive commands.

2.3) The student is able to recognize that the repeat statement is a more
effecient and simplified structure for repeated sequences of primitives or
procedures.

2.4) The student is able to predict the output effect of the repeat command
used with primitives and defined procedures.

3. Basic Procedures

3.1) The student is able to identify the proper syntax for defining a
procedure.

3.2) The student is able to recognize that a procedure is basically a set of
command steps defined to perform some task.

3.3) The student is able to predict the output effects of procedures using
sequenced primitive commands and the repeat command.

3.4) The student is able to predict the output effects of procedures when
used in combination with primitive and repeat commands.

3.5) The student is able to identify operational features of the LogoWriter

Editor.

276
4, Super-Procedures and Sub-Procedures
4.1) The student is able to differientiate between the main calling
procedure and its subprocedures in a program.
4.2) The student is able to identify that the restructuring of a larger ‘
procedure into a calling procedure and subprocedures promotes effective
programming by problem analysis, task division, and procedure reusability.
4.3) The student is able to predict the graphic effects of the execution of a
calling procedure with its included subprocedures.
4.4) The student is able to select a clear, concise, calling procedure that
calls appropriate sub-procedures.

5. Varlable Use

5.1) The student is able to recognize the proper syntax for procedures
using single variable and dual variable inputs.

5.2) The student is able to recognize that variables are placeholders for
changeable values that permit flexibility and generality in procedures.

5.3) The student is able to predict the graphic effects of the execution of
procedures using variables with specific input values.

5.4) The student is able to predict the graphic effects of the execution of
procedures using variables, with internal modification of variables, given
specific input to the procedures.

5.5) ‘The student is able to select an appropriate procedure for a
programming problem requiring the use of more than one variable.

6. Recursive Procedures and Conditional Statements

6.1) The student is able to identify the proper syntax and format of a
procedure using recursion.

6.2) The student is able to recognize that a recursive procedure Is a
procedure which calls itself as a subprocedure permitting modifiable
repetition.

6.3) The student will be able to predict the graphic effects of the execution

of basic procedures using recursion.
6.4) The student will be able to predict the graphic effects of the execution

of procedures using recursion and conditional statements.
6.5) The student is able to select an appropriate stop procedure for a
recursion.

277

' Secondary Education 101
Midterm Test - LogoWriter Comprehension Part

Name \

Directions: Please read the following questions carefully arid select the
best answer for each question. In questions involving graphics, or sequences of
specific commands, always assume that the turtle starts In the home position unless

the question states otherwise.

1. Examine the following primitive command descriptions; which
of the desciiptions are incorrect?

rd - moves the turtle forward a certain distance

Rt - turns the turtle to the right a certain number of degrees
Home - clears the screen and moves the turtie to the screens center
facing up.

fills a graphic shape with a specific color

picks up the drawing pen of the turtle so that no line is
drawn as the turtle moves

Fill
Pu

a. all of the descriptions are correct,.

b. one of the descriptions is Incorrect.

c. two of the descriptions are incorrect.

d. three descriptions are Incorrect.

e. the descriptions are all basically correct, but the primitive commands
must be typed in all capital letters for them to work.

2. In the LOGO programming Language, which of the following Is
not a primitive?

a. Cg

, b, Fd

" ¢, Seth
d. Fillit
e. Home

3. In Logo, the "primitive" commands are:

a. Uscful procedures invented and deflned by the user to perform some
task, like moving the turtle forward or drawing a triangle,
b. Useful procedures that are already defined In the Logo language when it starts up.
c. The basic movement commands of FD, BK, RT, and LT, which are the only
commands that actually move the turtle on the screen, and thus the only
"primitive" commands.
d. The commands of PU, PD, PE, Ilome, HT, ST, and CQ, which are the
only commands that require no Input numbers, thus they are the only "primitive”

commands.
e. None of the above statements is correct.

278

4, Glven the following sequence of primitive commands, and the information
that.the turtle is facing directly to the right of the screen, (2-), before the
commands are executed, which way does the turtle face after the commands
are executed? :

Fd 50 '

Rt 90

Fd 100

Rt 180

Bk 40

Lt 90

a. The turtle now faces to the bottom of the screen.v
b. The turtle now faces to the left of the screen.+4

. The turtle now faces to the top of the screen.A

. The turtle still faces to the right of the screen. p>

. It Is iImpossible to tell without specific coordinates,

oQo

5. Which of the following sets of commands will position the turtle
the greatest distance away from the home position?
{assume that the turtle starts in the home position)

a. Fd 100 b. Fd 200 ¢ Bk 100 d. Fd 100 e. It is impossible
Bk 100 HT Rt 90 : BK 200 to tell without
Rt 90 Fd 100 Ht Fd 25 typing these
Fd 100 Home Rt 90 Ht commands into
Bk 40 Fd 20 Fd 70 Fd 60 the computer.

6. What will the following sequence of commands draw?
(assume that the turtle starts In the home position)
Fd 50
RT 60
FD 50
RT 60
Fd 60
RT 60

A AT

279

7. What will be drawn by the following scquence of commands?
(assume that the turtle starts in the home position)

Fd 50 .
Rt 90 '

Fd 50

Home

Fd 50

C d. € None

a. b,
of
These

8. Which of the following Repeat commands will not produce an error message
when it 1s executed?.

a. Repeat [Fd 50 Bk 50 Rt 60}

b. Repeat Fd 50 [Rt 90}

c. Repeat 3 (Fd 50 Bk 50)

d. Repeat 4 [PuRt 90 Fd 50 Pd Bk 50]

e. All of the above statements will produce error messages.

9. Which of the choices below ’ rggtgg
is the most efficient replacement . Rt 70
for this set of commands to the right? Fd 50
Rt 70
I Fd 50
Rt 70
Fd 50
Rt 90
a. Setc 3 b. Setc3 c. Setc3
Repeat 3 {Fd 50 Rt 70] Repeat 4 |[FFd 50 Rt 70] I'd 200
Fd 50 Rt 90 Rt 210
Rt 90 Rt 90
d. Repeat 3 [Setc 3 Fd 50 Rt 70] e. Repeat 3 [Setc 3 Fd 50 Rt 70]
Fd 50

Rt 90

280

10. In Logo, the Repeat command:

a. will make the turtle do something exactly twice, (for Instance: Repeat Square
draws two squares exactly the same),

b. provides the capability to stimplify repeated sequences of commands .

into a single more efficlent command.

must be used when drawing a square, triangle, rectangle, or circle.

will make the turtle do something over and over forever, until the programmer
presses the "open-appie” and "S" keys.

e. none of the above are correct.

ae

11. What shape would the following repeat command draw?
(assume that the turtle starts in the home position)

Repeat 5 [Fd 50 Bk 50 Rt 45}

a. b. c. d.
' None
of
These

12. Which of the following procedures will not produce an error message
when the procedure is executed?

a. Vee b. To C. To Vee d. To Vee e. all of these
Lt 45 Vee Lt 45 Lt 45 will produce
Bk 50 Lt 45 Bk 50 Bk 50 error messages
Rt 90 Bk 50 Rt 90 Rt 90
Fd 60 Rt 90 Fd 50 Fd 50
End gﬂgo Stop To End

13. In LogoWriter, the term "Procedure” basically stands for:

the technique for drawing step by step pictures with a computer

. a set of defined command steps to perform some task

the important problem solving steps of defining the problem, choosing a plan,
carrying out the plan, and looking back at the solution.

all the important commands for using the editor, such as "open-apple-f"

none of the above

ea oow

281

14, Which of the following procedures would correctly draw the figure
shown below? {assume that the turtle starts in the home position)

"\

a, To Peak b. To Peak ¢. To Peak d. To Peak €. None

RT 45 ¥d 50 RT 45 Rt 90 of

Fd 50 RT 90 Fd 50 Fd 50 These
RT 45 Fd 50 RT S0 Rt 45

Fd 50 End Fd 50 Fd 50

End End End

15. Given the Square procedure, what would be the
graphical result of the following sequence of commands?
{assume that the turtle starts in the home position)

Command Sequence: To Square

Cg Repeat 4 {Fd 50 Rt 90]
Repeat 4 [Square Rt 90] End
Fd 50 -
Square
a. b. c. d. ' e. None
of
These

16. When using the LogoWrlter editor, It Is Impartant to:

a. press "open-apple-f* when entering the editor and "escape”
when cxiting the editor.

b. begin every student defined procedure with the word "To" and

end every student defined procedure with the word "End".

begin a brand new page for each new procedure.

none of the above are correct.

all of the above are correct.

oo

282

17. The following is an example of a program In LogoWrliter:

To Blossom To Stem To Flower To Square .
Repeat 10 {Square Rt 36] Home Stem Repeat 4 [Fd 50 Rt 90)
End Fd 100 Blossom End

End End

Which of the following statements is true?

a. Blossom is the main calling procedure for this program.

b. Square Is the main calling procedure for this program.

¢. Flower Is the main calling procedure for this program.

d. Stem and Blossom are both main calling procedures for this program.
e. There Is no main calling procedure for this program,

18. What Is one of the reasons that a programmer might want to divide up a
procedure into a calling procedure and various sub-procedures?

a. Because the LogoWriter editor only works with small procedures of no

more then one screen long.
b. Because it Is easler to analyze a problem, and program Its solution, in parts.
c. Because sub-procedures like Square, Triangle, and Clrcle are already bulit

into the Logo language, and these won't have to be created by the programmer.

d. Because in Logo there is no immediate mode, and the turtle can not execute a
command unless it is written Into a sub-procedure stored in the editor.
e. None of the above are true.

19. Given the following procedures In the workspace, what would
be the graphic output when running the procedure "House"?
{assume that the turtle starts from the home position)

To House To Roof To Square
Square Repeat 3[Fd 50 Rt 120] Repeat 4[Fd 50 Rt 90)
Roof End End
End
. . c. . e.
a b d None
of

these

283

20." Using the procedures of Frame, Wheel, & Handlebars, and assuming that
each of these procedures draw only a specific shape, what is the super-procedure
most likely needed for drawing a bicycle? '

a. To Bicycle b. To Blcycle c. To Bicycle d. ToBicycle e. None
Frame Frame Frame Frame of
Movel Wheel Move Movel These
Repeat 2 {Wheel| Wheel Wheel Wheel
Move2 Handlebars Move Move2
Handlebars End Wheel Wheel
End Move Move3

Handlebars Handlebars
End End

21. Looking at the following procedures, which of the statements below
would be considered true? .

. To Something :X ;Y
T Myotery X o
Rt :X + 90 RT :Y
Repeat 100 [Fd :X Rt :X] Repeat 100 [Fd :X Rt :Y)
End End

a. Both the Mystery procedure and the Something procedure use two variables.

b. The :X in the line "To Myste:ly :X", 1s unnecessary for input and could be removed.
c. The Mystery procedure could be executed by typing Mystery 47.

d. The Something procedure could be executed by typing Something 17.

e. More than one of these statements is true.

22, One of the reasons programmers may want to use variables in their procedures
Is because:

. variables are needed In procedures to use the LogoWrlter editor .

. variable procedures are what make the graphics in LogoWriter colorful.
varlables are needed for graphics, especially in drawing curved lines,
procedures using variables are more easlly reused in other applications.
none of the above

fooeoTe

284

23. Using the following procedures, predict what happens when
Train 20 50 Is executed. (assume the turtle starts In the home position)

To Train :Width :Length To Rectangle :Width :Length
Rectangle :Width :Length ge%eat 2[Fd :Width RT 90 FD :Length RT 90|
n]

RT 90
FD :Length
LT 90
Rectangle :Width :Length
End]
a, b. c. d. e. None
of -
— I | l These

I

24. Which of the figures shown below will result from the execution

of Stack 507
To Stack :X To Rectangle :X
Rectangle :X Repeat 2 [Fd :X Rt 90 Fd :X * 2 Rt 90]

Rectangle :X-20 End
Rectangle :X-30

End —'I

d. e. |
]

25, A student would like to design a LogoWrliter program which
will draw a triangle placed directly above a square, as In the
picture on the right. She would like to have the side of the
square and the side of the trlan%:e to be different inputs. Which
procedure below, would best it her desire? (Square and Triangle
are already in the workspace)

a. ToFlg:X:y b. ToFig:X ¢ ToFig:X:¥ d. ToFlg:X:y e Noneof

S X Square :X Square :X Square :X these would
Fglz?{re Fd :X Fd :Y Triangle ;)Y . be appropriate
Triangle :Y Triangle :X Triangle 1Y End

End End End

285

26. Which of the following is an example of a procedure using recursion
and a conditional statement to terminate 1t.?

a.ToThing :L. b. ToThing:L : c. To Thing :L d. To Thing:L e. None
Td :L Repeat 4 [Fd :L Rt 5] For:L=1to4 Fd :L of
RT S5 Id :L Fd :L Thing :L - 1 these
Thing :L - 1 If :L. < O [Stop] Rt 90 End
IF :L < O [Stop] End Next :L
End End

27. A 'recursive” procedure in LogoWriter {s a procedure that:

a. uses repeated curves within the graphical output.
b. is basically the same as a repeat statement but uses less commands.
c. calls itself as a sub-procedure.

d. calls more then two different sub-procedures.

e. all of the above are correct.

28. Looking at the following procedure, which of the statements
Iisted below best describes the execution of the program?-

To Lots
Repeat 2 [Fd 20 Rt 90 Fd 50 Rt 90]
Pu

Fd 20
Pd
Lots
End

. The procedure draws the same rectangle, in the same place,

continually, until someone stops the program.

. The procedure draws two rectangles, one above the other one.

The procedure draws one rectangle, moves forward, and then

glves an error message. .

. The procedure continues to draw rectangles stacked above
each other until the memory of the computer is filled up,

e. None of the statements above describe the execution.

Qa oo »

286

29. Given the procedures shown below, what figure would be drawn by
‘Mystery 30? (assume that the turtle starts in the home position)

To Mystery :S To Rsquare S To Lsquare :S '
IF :S = 0 [Stop] Repeat 4[FD :S RT 90] Repeat 4[FD :S LT 90]
IF :S = 30 [RSquare :S] End End

IF :S < 20 [LSquare :S)
Mystery :S - 10
End

a. b. C. d. e.

[[] 1 |1 [1]

30. In the following recursive procedure Blocks, what is the correct
conditional statement to stop the procedure so that the output looks ltke
the figure below when Blocks 3 is executed?

Blocks Recursive Procedure Destred Output
{line 1) To Blocks :x
(line 2) Repeat 4 [Fd 50 Rt 90]
(line 3) Fd 50
(line 4) Blocks :x-1
(line 5) End

a. Place the statement: "If :x < 0 [stop]" between lines 1 and 2.
. Place the statement: "If :x = O [stop]" between lines 1 and 2.
c. Place the statement: "If :x = O [stop]" between lines 3 and 4.
d. Place the statement: "If :x = O [stop]" between lines 4 and 5.
¢. None of the above

287

APPENDIX M: ANALOGICAL REASONING INTRODUCTION
TRANSPARENCIES

288

Analogical Reasoning:

The abllity to utilize a well understood problem to provide
insight and structure for the development of a solution for a
less understood problem.

Atomlic

Solar Structure

System

Problem 1 Problem 2

(Mapping relevant features while ignoring irrelevant features)

289

Examples of Analogical Reasoning

Using the knowledge of the solar system
to help understand the atom.

)

— o >

Refering back to other cars driven in the past to understand
how to open the hood of the car you are currently driving.

Past Cars

Inside Latch Under
Hood Release Hood Lip

Double Latch Key Locked
Near Bumper

Current Car

Hood Release?

Using your knowledge of Vietnam, to make
Judgements about the situation in Nicargua.

US Forces
Asia

US Troop Commitment

Central Ameria
Honduras/NIcaragua
Drug Traflicing

Agressfon
Communism
North/South Vietnamese

Understanding relationships organized in the form
of analogies on intelligence tests.

PISTOL is to BOW as BULLET is to (arrow) .

L is to as/A\isto Q

290

St Co nential Model of Analogical Reasonin
Four basic components to the process.........

Map ‘
Bird is to Airplane as Fish isto —
f Infer ’ f Apply ’

Ml_nmmmmm;asmmwmmmmﬂn

Bird Alrplane Fish

Flys Flys Swims

Allve Metal Allve

Wings Wings Gills

Feet Carries Humans Resides In Water
ete... ete... ete...

[2.] Infering: Relationship looked at between first two terms,

Birds and Airplanes both fly, and have wings to support
them in the alr, etc...

Mapping: Relationship looked at hetween first and third_terms.
Birds and Fish both are allve, and travel through environment, etc...

Applying: Completion of analogy where last term is discovered,
A good answer might be Submarine

© moves through water like a fish
O carries humans like an alrplane

291

Coach's Problem:

Fourth down, team behind,
What play to call?

Thinl of plays used in similar situations:

—/ T~

Passg Fleld Goal :
Play Altempt Run Punt

\ { 1

ENCODE Play Characteristics

Pass Play Eeld Goal Run Bunt
2 or 3 recelvers only 3 points fullback or halfback 1oss of football
Flag or Post pattern high probabtlily close low gain but steady protecUve measure
Rlsﬁy fairly safe young fullback return possibility
Long gain possible usual kicker hurt strong blocking left good punter

INFER ical utcomes (in

Pass Play Feld Goal ' Bun Punt
Falrly successful Has been fairly Up the middle Punting effective
when team not sure points when u seems to work best If time left to

suspecting play close and good blocking except if team tired resume offense

MAP to Current Situation

Reld Goal Run
This team Is weak ~ This team has been This team s slrong This team never
against the pass very successful at up the middle but blocks a punt but
. blocking fleld goals we have made yardage has excellent
on the outside returns
APPLY 1 1d Pl

Make a decision, record result for future use, and I
unsuccessful, no sweat, you'll get them next play. (or year)

292

Analogical Reasoning in Programming

"an explicit design strategy of expert programmers is the
search for similar previously solved problems"

293

’

Analogical Reasoning:

The ability to utilize a well understood problem to provide
insight and structure for the development of a solution for a
less understood problem.

ENCODE~—y INFER~—> NAP—> APPLY

Using the knowledge of the solar system
to help understand the atom.,

- — °
® e

L — e

Using one computer program to help understand
and construct another computer program.,

Program New
X000K Program
XK ?°?°7?
XHXKKK > ??7?
proTe™s ——— 0°7?
XXX ??
XoaoaK ??7??

294

Introduction: Logo & the Logo Philosophy
¢ Invented by Seymour Papert at MIT
¢ Educational Programming Enviroment
* Student commands computer (not vice versa)
* Exploration and Feedback
* Development of powerful ideas & thinking skills

_———-‘/
Deductive
Reasoning Metacognition
Vi
ariables ete.. Inductive
Recursion Reasoning
Breaking a problem Anafo"g!cal

into parts Reasoning

	1989
	An investigation of the potential of guided Logo programming instruction for use in the development and transfer of analogical reasoning
	Nealy Frank Grandgenett
	Recommended Citation

	tmp.1415908085.pdf.2kPqJ

